
Reference Manual: Building Blocks

Adaptive Server® Enterprise
15.0

DOCUMENT ID: DC36271-01-1500-02

LAST REVISED: October 2005

Copyright © 1987-2005 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Warehouse, Afaria, Answers Anywhere, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Translator, APT-Library, AvantGo Mobile Delivery, AvantGo Mobile
Inspection, AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon
Application Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker,
ClearConnect, Client-Library, Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database
Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Developers Workbench, DirectConnect,
DirectConnect Anywhere, Distribution Director, e-ADK, E-Anywhere, e-Biz Impact, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise
Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager,
GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information
Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, M2M Anywhere, Mach Desktop, Mail
Anywhere Studio, Mainframe Connect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network,
M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, mFolio, Mirror Activator, MySupport, Net-
Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL
Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server,
Open ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PocketBuilder, Pocket
PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner,
PowerDimensions, PowerDynamo, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft
Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, QAnywhere, Rapport, RemoteWare,
RepConnector, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report-
Execute, Report Workbench, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library, S-Designor, SDF, Search Anywhere,
Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SOA Anywhere, SQL
Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL
Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL
Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, S.W.I.F.T. Message Format Libraries, Sybase Central, Sybase Client/
Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase IQ, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle,
Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial, SyberAssist, SybFlex, SyBooks, System 10, System
11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce, Transact-SQL, Translation Toolkit, UltraLite, UltraLite.NET,
UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, VisualWriter, VQL, WarehouseArchitect, Warehouse
Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB,
Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, and XP Server are trademarks of
Sybase, Inc. 06/05

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Reference Manual: Building Blocks iii

About This Book ... xi

CHAPTER 1 System and User-Defined Datatypes .. 1
Datatype categories ... 1
Range and storage size ... 2
Datatypes of columns, variables, or parameters 4

Declaring the datatype for a column in a table 5
Declaring the datatype for a local variable in a batch or procedure

5
Declaring the datatype for a parameter in a stored procedure.. 5
Determining the datatype of a literal.. 6

Datatypes of mixed-mode expressions .. 7
Determining the datatype hierarchy .. 7
Determining precision and scale ... 9

Datatype conversions... 9
Automatic conversion of fixed-length NULL columns.............. 10
Handling overflow and truncation errors.................................. 10

Standards and compliance... 11
Exact numeric datatypes .. 12

Integer types.. 13
Decimal datatypes... 14
Standards and compliance.. 15

Approximate numeric datatypes... 16
Understanding approximate numeric datatypes...................... 16
Range, precision, and storage size ... 17
Entering approximate numeric data .. 17
Values that may be entered by Open Client clients 17
Standards and compliance.. 18

Money datatypes.. 18
Accuracy.. 18
Range and storage size .. 18
Entering monetary values.. 18
Standards and compliance.. 19

Timestamp datatype... 19

Contents

iv Adaptive Server Enterprise

Creating a timestamp column.. 19
Date and time datatypes .. 20

Range and storage requirements.. 21
Entering date and time data .. 21
Standards and compliance.. 25

Character datatypes... 25
unichar, univarchar.. 25
Length and storage size .. 26
Entering character data ... 27
Treatment of blanks... 29
Manipulating character data .. 30
Standards and compliance.. 30

Binary datatypes .. 30
Valid binary and varbinary entries ... 30
Entries of more than the maximum column size 31
Treatment of trailing zeros... 31
Platform dependence .. 32
Standards and compliance.. 33

bit datatype... 33
Standards and compliance.. 33

sysname and longsysname datatypes ... 33
Standards and compliance.. 34

text, image, and unitext datatypes ... 34
Data structures used for storing text, unitext, and image data 35
Initializing text, unitext, and image columns 36
Saving space by allowing NULL.. 37
Getting information from sysindexes 37
Using readtext and writetext.. 38
Determining how much space a column uses......................... 38
Restrictions on text, image, and unitext columns 39
Selecting text, unitext, and image data 39
Converting text and image datatypes...................................... 40
Converting to or from unitext ... 40
Pattern matching in text data... 41
Duplicate rows... 41
Standards and compliance.. 41

User-defined datatypes .. 41
Standards and compliance.. 42

CHAPTER 2 Transact-SQL Functions ... 43
Types of functions .. 43
Aggregate functions ... 49

Aggregates used with group by... 50
Aggregate functions and NULL values.................................... 50

Contents

Reference Manual: Building Blocks v

Vector and scalar aggregates ... 50
Aggregate functions as row aggregates.................................. 53

Datatype conversion functions ... 55
Converting character data to a noncharacter type 58
Converting from one character type to another....................... 58
Converting numbers to a character type 59
Rounding during conversion to and from money types 59
Converting date and time information 60
Converting between numeric types ... 60
Arithmetic overflow and divide-by-zero errors 61
Conversions between binary and integer types 62
Converting between binary and numeric or decimal types...... 63
Converting image columns to binary types 63
Converting other types to bit ... 63
Converting NULL value ... 64

Date functions .. 64
Date parts.. 64

Mathematical functions .. 65
Security functions... 66
String functions .. 67

Limits on string functions... 67
System functions.. 68
Text, unitext, and image columns .. 68
Text and image functions ... 69
abs ... 70
acos.. 71
ascii .. 72
asin... 73
atan .. 74
atn2 .. 75
avg ... 76
audit_event_name.. 78
biginttohex.. 80
case.. 81
cast... 84
ceiling ... 87
char .. 89
char_length .. 91
charindex.. 93
coalesce ... 94
col_length... 96
col_name.. 97
compare ... 98
convert ... 103

Contents

vi Adaptive Server Enterprise

cos.. 109
cot .. 110
count .. 111
count_big.. 113
current_date ... 115
current_time ... 116
curunreservedpgs .. 117
data_pages .. 119
datachange .. 121
datalength .. 123
dateadd .. 124
datediff ... 127
datename ... 130
datepart .. 132
day ... 136
db_id .. 137
db_name .. 138
degrees .. 139
derived_stat.. 140
difference ... 143
exp ... 144
floor .. 145
get_appcontext... 147
getdate ... 149
getutcdate .. 150
has_role ... 151
hextobigint.. 153
hextoint... 154
host_id.. 155
host_name ... 156
identity_burn_max.. 157
index_col .. 158
index_colorder.. 159
inttohex... 160
is_quiesced .. 161
is_sec_service_on.. 163
isnull ... 164
lct_admin.. 165
left .. 168
len .. 170
license_enabled ... 171
list_appcontext ... 172
lockscheme .. 173
log .. 174

Contents

Reference Manual: Building Blocks vii

log10 .. 175
lower... 176
ltrim .. 177
max .. 178
min ... 180
month ... 181
mut_excl_roles ... 182
newid.. 183
next_identity ... 185
nullif .. 186
object_id... 188
object_name... 189
pagesize... 190
partition_id.. 192
partition_name ... 193
patindex.. 194
pi .. 197
power ... 198
proc_role .. 199
radians ... 201
rand .. 202
replicate.. 203
reserved_pages ... 204
reverse ... 206
right .. 207
rm_appcontext ... 209
role_contain.. 210
role_id .. 211
role_name .. 212
round .. 213
row_count... 215
rtrim .. 216
set_appcontext... 217
show_role... 219
show_sec_services .. 220
sign... 221
sin... 222
sortkey.. 223
soundex.. 228
space.. 229
square .. 230
sqrt ... 231
str ... 232
str_replace ... 234

Contents

viii Adaptive Server Enterprise

stuff .. 236
substring... 238
sum .. 240
suser_id.. 242
suser_name ... 243
syb_quit.. 244
syb_sendmsg ... 245
tan .. 246
tempdb_id .. 247
textptr ... 248
textvalid .. 249
to_unichar .. 250
tran_dumptable_status... 251
tsequal.. 252
uhighsurr .. 254
ulowsurr.. 255
upper .. 256
uscalar.. 257
used_pages.. 258
user .. 260
user_id ... 261
user_name ... 262
valid_name... 263
valid_user... 264
year .. 265

CHAPTER 3 Global Variables... 267
Adaptive Server global variables.. 267

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters.................. 275
Expressions.. 275

Size of expressions ... 276
Arithmetic and character expressions 276
Relational and logical expressions .. 276
Operator precedence .. 277
Arithmetic operators .. 277
Bitwise operators... 278
String concatenation operator ... 279
Comparison operators... 280
Nonstandard operators.. 280
Using any, all and in .. 281
Negating and testing ... 281
Ranges .. 281

Contents

Reference Manual: Building Blocks ix

Using nulls in expressions... 281
Connecting expressions .. 283
Using parentheses in expressions .. 284
Comparing character expressions... 284
Using the empty string... 285
Including quotation marks in character expressions 285
Using the continuation character... 285

Identifiers.. 285
Short identifiers ... 287
Tables beginning with # (temporary tables) 288
Case sensitivity and identifiers .. 288
Uniqueness of object names ... 289
Using delimited identifiers ... 289
Identifying tables or columns by their qualified object name . 290
Determining whether an identifier is valid.............................. 292
Renaming database objects.. 292
Using multibyte character sets .. 292

Pattern matching with wildcard characters................................... 293
Using not like... 294
Case and accent insensitivity .. 295
Using wildcard characters ... 295
Using multibyte wildcard characters...................................... 297
Using wildcard characters as literal characters 297
Using wildcard characters with datetime data 299

CHAPTER 5 Reserved Words.. 301
Transact-SQL reserved words ... 301
ANSI SQL reserved words ... 302
Potential ANSI SQL reserved words .. 303

CHAPTER 6 SQLSTATE Codes and Messages ... 305
Warnings .. 305
Exceptions.. 306

Cardinality violations ... 306
Data exceptions... 307
Integrity constraint violations ... 308
Invalid cursor states .. 308
Syntax errors and access rule violations............................... 309
Transaction rollbacks .. 310
with check option violation... 310

Index ... 313

Contents

x Adaptive Server Enterprise

Reference Manual: Building Blocks xi

About This Book

The Adaptive Server Reference Manual includes four guides to Sybase®
Adaptive Server® Enterprise and the Transact-SQL® language:

• Building Blocks describes the “parts” of Transact-SQL: datatypes,
built-in functions, global variables, expressions and identifiers,
reserved words, and SQLSTATE errors. Before you can use
Transact-SQL sucessfully, you must understand what these building
blocks do and how they affect the results of Transact-SQL statements.

• Commands provides reference information about the Transact-SQL
commands, which you use to create statements.

• Procedures provides reference information about system procedures,
catalog stored procedures, extended stored procedures, and dbcc
stored procedures. All procedures are created using Transact-SQL
statements.

• Tables provides reference information about the system tables, which
store information about your server, databases, users, and other
details of your server. It also provides information about the tables in
the dbccdb and dbccalt databases.

Audience The Adaptive Server Reference Manual is intended as a reference tool for
Transact-SQL users of all levels.

How to use this book • Chapter 1, “System and User-Defined Datatypes,” describes the
system and user-defined datatypes that are supplied with Adaptive
Server and indicates how to use them to create user-defined
datatypes.

• Chapter 2, “Transact-SQL Functions,” lists the Adaptive Server
functions in a table that provides the name and a brief description.

• Chapter 3, “Global Variables,” lists the system-defined variables for
Adaptive Server in a table that provides the name and a brief
description of the returned status.

• Chapter 4, “Expressions, Identifiers, and Wildcard Characters,”
which provides information about using the Transact-SQL language.

xii Adaptive Server Enterprise

• Chapter 5, “Reserved Words,” provides information about the
Transact-SQL and ANSI SQL keywords.

• Chapter 6, “SQLSTATE Codes and Messages,” contains information
about Adaptive Server SQLSTATE status codes and the associated
messages.

Related documents The Adaptive Server® Enterprise documentation set consists of the following:

• The release bulletin for your platform – contains last-minute information
that was too late to be included in the books.

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use the Sybase
Technical Library.

• The Installation Guide for your platform – describes installation, upgrade,
and configuration procedures for all Adaptive Server and related Sybase
products.

• What’s New in Adaptive Server Enterprise? – describes the new features
in Adaptive Server version 15.0, the system changes added to support
those features, and changes that may affect your existing applications.

• ASE Replicator User’s Guide – describes how to use the Adaptive Server
Replicator feature of Adaptive Server to implement basic replication from
a primary server to one or more remote Adaptive Servers.

• Component Integration Services User’s Guide – explains how to use the
Adaptive Server Component Integration Services feature to connect
remote Sybase and non-Sybase databases.

• The Configuration Guide for your platform – provides instructions for
performing specific configuration tasks for Adaptive Server.

• Full-Text Search Specialty Data Store User’s Guide – describes how to use
the Full-Text Search feature with Verity to search Adaptive Server
Enterprise data.

• Glossary – defines technical terms used in the Adaptive Server
documentation.

• Historical Server User’s Guide – describes how to use Historical Server to
obtain performance information for SQL Server® and Adaptive Server.

• Java in Adaptive Server Enterprise – describes how to install and use Java
classes as datatypes, functions, and stored procedures in the Adaptive
Server database.

 About This Book

Reference Manual: Building Blocks xiii

• Job Scheduler User's Guide – provides instructions on how to install and
configure, and create and schedule jobs on a local or remote Adaptive
Server using the command line or a graphical user interface (GUI).

• Messaging Service User’s Guide – describes how to useReal Time
Messaging Services to integrate TIBCO Java Message Service and IBM
WebSphere MQ messaging services with all Adaptive Server database
applications.

• Monitor Client Library Programmer’s Guide – describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

• Monitor Server User’s Guide – describes how to use Monitor Server to
obtain performance statistics from SQL Server and Adaptive Server.

• Performance and Tuning Guide – is a series of four books that explains
how to tune Adaptive Server for maximum performance:

• Basics – the basics for understanding and investigating performance
questions in Adaptive Server.

• Locking – describes how the various locking schemas can be used for
improving performance in Adaptive Server.

• Optimizer and Abstract Plans – describes how the optimizer
processes queries and how abstract plans can be used to change some
of the optimizer plans.

• Monitoring and Analyzing – explains how statistics are obtained and
used for monitoring and optimizing performance.

• Quick Reference Guide – provides a comprehensive listing of the names
and syntax for commands, functions, system procedures, extended system
procedures, datatypes, and utilities in a pocket-sized book (regular size
when viewed in PDF format).

• Reference Manual – is a series of four books that contains the following
detailed Transact-SQL information:

• Building Blocks – Transact-SQL datatypes, functions, global
variables, expressions, identifiers and wildcards, and reserved words.

• Commands – Transact-SQL commands.

• Procedures – Transact-SQL system procedures, catalog stored
procedures, system extended stored procedures, and dbcc stored
procedures.

xiv Adaptive Server Enterprise

• Tables – Transact-SQL system tables and dbcc tables.

• System Administration Guide – provides in-depth information about
administering servers and databases. This manual includes instructions
and guidelines for managing physical resources, security, user and system
databases, and specifying character conversion, international language,
and sort order settings.

• System Tables Diagram – illustrates system tables and their entity
relationships in a poster format. Full-size available only in print version; a
compact version is available in PDF format.

• Transact-SQL User’s Guide – documents Transact-SQL, the Sybase
enhanced version of the relational database language. This manual serves
as a textbook for beginning users of the database management system.
This manual also contains descriptions of the pubs2 and pubs3 sample
databases.

• Using Adaptive Server Distributed Transaction Management Features –
explains how to configure, use, and troubleshoot Adaptive Server DTM
features in distributed transaction processing environments.

• Using Sybase Failover in a High Availability System – provides
instructions for using Sybase Failover to configure an Adaptive Server as
a companion server in a high availability system.

• Unified Agent and Agent Management Console – Describes the Unified
Agent, which provides runtime services to manage, monitor and control
distributed Sybase resources.

• Utility Guide – documents the Adaptive Server utility programs, such as
isql and bcp, which are executed at the operating system level.

• Web Services User’s Guide – explains how to configure, use, and
troubleshoot Web Services for Adaptive Server.

• XA Interface Integration Guide for CICS, Encina, and TUXEDO –
provides instructions for using the Sybase DTM XA interface with
X/Open XA transaction managers.

• XML Services in Adaptive Server Enterprise – describes the Sybase native
XML processor and the Sybase Java-based XML support, introduces
XML in the database, and documents the query and mapping functions
that comprise XML Services.

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
Manuals Web site to learn more about your product:

 About This Book

Reference Manual: Building Blocks xv

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ Finding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

xvi Adaptive Server Enterprise

2 Either select the product family and product under Search by Product; or
select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBFs/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBFs/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBFs/Maintenance report, or click the
product description to download the software.

Conventions The following sections describe conventions used in this manual.

 About This Book

Reference Manual: Building Blocks xvii

SQL is a free-form language. There are no rules about the number of words you
can put on a line or where you must break a line. However, for readability, all
examples and most syntax statements in this manual are formatted so that each
clause of a statement begins on a new line. Clauses that have more than one part
extend to additional lines, which are indented. Complex commands are
formatted using modified Backus Naur Form (BNF) notation.

Table 1 shows the conventions for syntax statements that appear in this manual:

Table 1: Font and syntax conventions for this manual

Element Example

Command names,procedure names, utility names, and
other keywords display in sans serif font.

select

sp_configure

Database names and datatypes are in sans serif font. master database

Book names, file names, variables, and path names are
in italics.

System Administration Guide

sql.ini file

column_name

$SYBASE/ASE directory

Variables—or words that stand for values that you fill
in—when they are part of a query or statement, are in
italics in Courier font.

select column_name

from table_name

where search_conditions

Type parentheses as part of the command. compute row_aggregate (column_name)

Double colon, equals sign indicates that the syntax is
written in BNF notation. Do not type this symbol.
Indicates “is defined as”.

::=

Curly braces mean that you must choose at least one
of the enclosed options. Do not type the braces.

{cash, check, credit}

Brackets mean that to choose one or more of the
enclosed options is optional. Do not type the brackets.

[cash | check | credit]

The comma means you may choose as many of the
options shown as you want. Separate your choices
with commas as part of the command.

cash, check, credit

The pipe or vertical bar(|) means you may select only
one of the options shown.

cash | check | credit

An ellipsis (...) means that you can repeat the last unit
as many times as you like.

buy thing = price [cash | check | credit]

[, thing = price [cash | check | credit]]...

You must buy at least one thing and give its price. You may
choose a method of payment: one of the items enclosed in
square brackets. You may also choose to buy additional
things: as many of them as you like. For each thing you
buy, give its name, its price, and (optionally) a method of
payment.

xviii Adaptive Server Enterprise

• Syntax statements (displaying the syntax and all options for a command)
appear as follows:

sp_dropdevice [device_name]

For a command with more options:

select column_name
from table_name
where search_conditions

In syntax statements, keywords (commands) are in normal font and
identifiers are in lowercase. Italic font shows user-supplied words.

• Examples showing the use of Transact-SQL commands are printed like
this:

select * from publishers

• Examples of output from the computer appear as follows:

pub_id pub_name city state
------- --------------------- ----------- -----
0736 New Age Books Boston MA
0877 Binnet & Hardley Washington DC
1389 Algodata Infosystems Berkeley CA

(3 rows affected)

In this manual, most of the examples are in lowercase. However, you can
disregard case when typing Transact-SQL keywords. For example, SELECT,
Select, and select are the same.

Adaptive Server’s sensitivity to the case of database objects, such as table
names, depends on the sort order installed on Adaptive Server. You can change
case sensitivity for single-byte character sets by reconfiguring the Adaptive
Server sort order. For more information, see the System Administration Guide.

Accessibility
features

This document is available in an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technology such as
a screen reader, or view it with a screen enlarger.

 About This Book

Reference Manual: Building Blocks xix

Adaptive Server HTML documentation has been tested for compliance with
U.S. government Section 508 Accessibility requirements. Documents that
comply with Section 508 generally also meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT as initials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

xx Adaptive Server Enterprise

Reference Manual: Building Blocks 1

C H A P T E R 1 System and User-Defined
Datatypes

This chapter describes the Transact-SQL datatypes, which specify the
type, size, and storage format of columns, stored procedure parameters,
and local variables.

Datatype categories
Adaptive Server provides several system datatypes and the user-defined
datatypes timestamp, sysname, and longsysname. Table 1-1 lists the
categories of Adaptive Server datatypes. Each category is described in a
section of this chapter.

Topics Page
Datatype categories 1

Range and storage size 2

Datatypes of columns, variables, or parameters 4

Datatypes of mixed-mode expressions 7

Datatype conversions 9

Standards and compliance 11

Exact numeric datatypes 12

Approximate numeric datatypes 16

Money datatypes 18

Timestamp datatype 19

Date and time datatypes 20

Character datatypes 25

Binary datatypes 30

bit datatype 33

sysname and longsysname datatypes 33

text, image, and unitext datatypes 34

User-defined datatypes 41

Range and storage size

2 Adaptive Server Enterprise

Table 1-1: Datatype categories

Range and storage size
Table 1-2 lists the system-supplied datatypes and their synonyms and provides
information about the range of valid values and storage size for each. For
simplicity, the datatypes are printed in lowercase characters, although Adaptive
Server allows you to use either uppercase or lowercase characters for system
datatypes. User-defined datatypes, such as timestamp, are case-sensitive. Most
Adaptive Server-supplied datatypes are not reserved words and can be used to
name other objects.

Table 1-2: Adaptive Server system datatypes

Category Used for

Exact numeric datatypes Numeric values (both integers and numbers with a decimal portion) that must be
represented exactly

Approximate numeric datatypes Numeric data that can tolerate rounding during arithmetic operations

Money datatypes Monetary data

Timestamp datatype Tables that are browsed in Client-Library™ applications

Date and time datatypes Date and time information

Character datatypes Strings consisting of letters, numbers, and symbols

Binary datatypes Raw binary data, such as pictures, in a hexadecimal-like notation

bit datatype True/false and yes/no type data

sysname and longsysname
datatypes

System tables

text, image, and unitext
datatypes

Printable characters or hexadecimal-like data that requires more than the
maximum column size provided by your server’s logical page size.

Abstract datatypes Adaptive Server supports abstract datatypes through Java classes. See Java in
Adaptive Server Enterprise for more information.

User-defined datatypes Defining objects that inherit the rules, default, null type, IDENTITY property,
and base datatype of the datatypes listed in this table. text undergoes
character-set conversion if client is using a different character set, image does
not.

Datatypes by
category Synonyms Range Bytes of storage

Exact numeric: integers

CHAPTER 1 System and User-Defined Datatypes

Reference Manual: Building Blocks 3

bigint Whole numbers between 263 and -263
- 1 (from -
9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807,
inclusive.

8

int integer 231 -1 (2,147,483,647) to
-231 (-2,147,483,648

4

smallint 215 -1 (32,767) to -215 (-32,768) 2

tinyint 0 to 255 (Negative numbers are not
permitted)

1

unsigned bigint Whole numbers between 0 and
18,446,744,073,709,551,615

8

unsigned int Whole numbers between 0 and
4,294,967,295

4

unsigned smallint Whole numbers between 0 and
65535

2

Exact numeric: decimals

numeric (p, s) 1038 -1 to -1038 2 to 17

decimal (p, s) dec 1038 -1 to -1038 2 to 17

Approximate numeric

float (precision) machine dependent 4 for default precision < 16,
8 for default precision >= 16

double precision machine dependent 8

real machine dependent 4

Money

smallmoney 214,748.3647 to -214,748.3648 4

money 922,337,203,685,477.5807 to
-922,337,203,685,477.5808

8

Date/time

smalldatetime January 1, 1900 to June 6, 2079 4

datetime January 1, 1753 to December 31,
9999

8

date January 1, 0001 to December 31,
9999

4

time 12:00:00AM to 11:59:59:999PM 4

Character

char(n) character pagesize n

Datatypes by
category Synonyms Range Bytes of storage

Datatypes of columns, variables, or parameters

4 Adaptive Server Enterprise

Datatypes of columns, variables, or parameters
You must declare the datatype for a column, local variable, or parameter. The
datatype can be any of the system-supplied datatypes, or any user-defined
datatype in the database.

varchar(n) character varying,
char varying

pagesize actual entry length

unichar Unicode character pagesize n * @@unicharsize
(@@unicharsize equals 2)

univarchar Unicode character
varying, char varying

pagesize actual number of characters *
@@unicharsize

nchar(n) national character,
national char

pagesize n * @@ncharsize

nvarchar(n) nchar varying,
national char varying,
national character
varying

pagesize @@ncharsize * number of
characters

text 231 -1 (2,147,483,647) bytes or fewer 0 when uninitialized;
multiple of 2K after
initialization

unitext 1 – 1,073,741,823 0 when uninitialized;
multiple of 2K after
initialization

Binary

binary(n) pagesize n

varbinary(n) pagesize actual entry length

image 231 -1 (2,147,483,647) bytes or fewer 0 when uninitialized;
multiple of 2K after
initialization

Bit

bit 0 or 1 1 (one byte holds up to 8 bit
columns)

Datatypes by
category Synonyms Range Bytes of storage

CHAPTER 1 System and User-Defined Datatypes

Reference Manual: Building Blocks 5

Declaring the datatype for a column in a table
To declare the datatype of a new column in a create table or alter table
statement, use:

create table [[database.]owner.]table_name
(column_name datatype [identity | not null | null]

[, column_name datatype [identity | not null |
null]]...)

alter table [[database.]owner.]table_name
add column_name datatype [identity | null
[, column_name datatype [identity | null]...

For example:

create table sales_daily
(stor_id char(4)not null,
ord_num numeric(10,0)identity,
ord_amt money null)

You can also declare the datatype of a new column in a select into statement,
use convert or cast:

select convert(double precision, x), cast (int, y) into
newtable from oldtable

Declaring the datatype for a local variable in a batch or procedure
To declare the datatype for a local variable in a batch or stored procedure, use:

declare @variable_name datatype
[, @variable_name datatype]...

For example:

declare @hope money

Declaring the datatype for a parameter in a stored procedure
Use the following syntax to declare the datatype for a parameter in a stored
procedure:

create procedure [owner.]procedure_name [;number]
[[(]@parameter_name datatype [= default] [output]

[,@parameter_name datatype [= default]
[output]]...[)]]

[with recompile]
as SQL_statements

Datatypes of columns, variables, or parameters

6 Adaptive Server Enterprise

For example:

create procedure auname_sp @auname varchar(40)
as

select au_lname, title, au_ord
from authors, titles, titleauthor
where @auname = au_lname
and authors.au_id = titleauthor.au_id
and titles.title_id = titleauthor.title_id

Determining the datatype of a literal

Numeric literals

Numeric literals entered with E notation are treated as float; all others are
treated as exact numerics:

• Literals between 231 - 1 and -231 with no decimal point are treated as
integer.

• Literals that include a decimal point, or that fall outside the range for
integers, are treated as numeric.

Note To preserve backward compatibility, use E notation for numeric
literals that should be treated as float.

Character literals

In versions of Adaptive Server earlier than 12.5.1, when the client’s character
set was different from the server’s character set, conversions were generally
enabled to allow the text of SQL queries to be converted to the server’s
character set before being processed. If any character could not be converted
because it could not be represented in the server’s character set, the entire query
was rejected. This character set “bottleneck” has been removed as of Adaptive
Server version 12.5.1.

CHAPTER 1 System and User-Defined Datatypes

Reference Manual: Building Blocks 7

You cannot declare the datatype of a character literal. Adaptive Server treats
character literals as varchar, except those that contain characters that cannot be
converted to the server’s default character set. Such literals are treated as
univarchar. This makes it possible to perform such queries as selecting unichar
data in a server configured for “iso_1” using a “sjis” (Japanese) client. For
example:

Since the character literal cannot be represented using the char datatype (in
“iso_1”), it is promoted to the unichar datatype, and the query succeeds.

Datatypes of mixed-mode expressions
When you perform concatenation or mixed-mode arithmetic on values with
different datatypes, Adaptive Server must determine the datatype, length, and
precision of the result.

Determining the datatype hierarchy
Each system datatype has a datatype hierarchy, which is stored in the
systypes system table. User-defined datatypes inherit the hierarchy of the
system datatype on which they are based.

The following query ranks the datatypes in a database by hierarchy. In addition
to the information shown below, your query results will include information
about any user-defined datatypes in the database:

select name, hierarchy
from systypes
order by hierarchy

 name hierarchy
 ----------------------------- ---------
floatn 1
float 2
datetimn 3
datetime 4
real 5
numericn 6
numeric 7

select * from mytable where unichar_column = ' '

Datatypes of mixed-mode expressions

8 Adaptive Server Enterprise

decimaln 8
decimal 9
moneyn 10
money 11
smallmoney 12
smalldatetime 13
intn 14
uintn 15
bigint 16
ubigint 17
int 18
uint 19
smallint 20
usmallint 21
tinyint 22
bit 23
univarchar 24
unichar 25
unitext 26
sysname 27
varchar 27
nvarchar 27
longsysname 27
char 28
nchar 28
timestamp 29
varbinary 29
binary 30
text 31
image 32
date 33
time 34
daten 35
timen 36
extended type 99

Note u<int type> is an internal representation. The correct syntax for unsigned
types is unsigned {int | integer | bigint | smallint }

The datatype hierarchy determines the results of computations using values of
different datatypes. The result value is assigned the datatype that is closest to
the top of the list or has the least hierarchical value.

CHAPTER 1 System and User-Defined Datatypes

Reference Manual: Building Blocks 9

In the following example, qty from the sales table is multiplied by royalty from
the roysched table. qty is a smallint, which has a hierarchy of 20; royalty is an int,
which has a hierarchy of 18. Therefore, the datatype of the result is an int:

smallint(qty) * int(royalty) = int

Determining precision and scale
For numeric and decimal datatypes, each combination of precision and scale is
a distinct Adaptive Server datatype. If you perform arithmetic on two numeric
or decimal values:

• n1 with precision p1 and scale s1, and

• n2 with precision p2 and scale n2

Adaptive Server determines the precision and scale of the results as shown in
Table 1-3.

Table 1-3: Precision and scale after arithmetic operations

Datatype conversions
Many conversions from one datatype to another are handled automatically by
Adaptive Server. These are called implicit conversions. Other conversions
must be performed explicitly with the convert, hextoint, inttohex, hextobigint,
and biginttohex functions. See “Datatype conversion functions” on page 55 for
details about datatype conversions supported by Adaptive Server.

Operation Precision Scale

n1 + n2 max(s1, s2) + max(p1 -s1, p2 - s2) + 1 max(s1, s2)

n1 - n2 max(s1, s2) + max(p1 -s1, p2 - s2) + 1 max(s1, s2)

n1 * n2 s1 + s2 + (p1 - s1) + (p2 - s2) + 1 s1 + s2

n1 / n2 max(s1 + p2 + 1, 6) + p1 - s1 + p2 max(s1 + p2 -s2 + 1, 6)

Datatype conversions

10 Adaptive Server Enterprise

Automatic conversion of fixed-length NULL columns
Only columns with variable-length datatypes can store null values. When you
create a NULL column with a fixed-length datatype, Adaptive Server
automatically converts it to the corresponding variable-length datatype.
Adaptive Server does not inform the user of the datatype change.

Table 1-4 lists the fixed- and variable-length datatypes to which they are
converted. Certain variable-length datatypes, such as moneyn, are reserved
datatypes; you cannot use them to create columns, variables, or parameters:

Table 1-4: Automatic conversion of fixed-length datatypes

Handling overflow and truncation errors
The arithabort option determines how Adaptive Server behaves when an
arithmetic error occurs. The two arithabort options, arithabort arith_overflow and
arithabort numeric_truncation, handle different types of arithmetic errors. You
can set each option independently, or set both options with a single set
arithabort on or set arithabort off statement.

Original fixed-length datatype Converted to

char varchar

unichar univarchar

nchar nvarchar

binary varbinary

datetime datetimn

date daten

time timen

float floatn

bigint, int, smallint, and tinyint intn

unsigned bigint, unsigned int, and
unsigned smallint

uintn

decimal decimaln

numeric numericn

money and smallmoney moneyn

CHAPTER 1 System and User-Defined Datatypes

Reference Manual: Building Blocks 11

• arithabort arith_overflow specifies behavior following a divide-by-zero
error or a loss of precision during either an explicit or an implicit datatype
conversion. This type of error is considered serious. The default setting,
arithabort arith_overflow on, rolls back the entire transaction in which the
error occurs. If the error occurs in a batch that does not contain a
transaction, arithabort arith_overflow on does not roll back earlier
commands in the batch, but Adaptive Server does not execute any
statements that follow the error-generating statement in the batch.

Setting arith_overflow to on refers to the execution time, not to the level of
normalization to which Adaptive Server is set.

If you set arithabort arith_overflow off, Adaptive Server aborts the statement
that causes the error, but continues to process other statements in the
transaction or batch.

• arithabort numeric_truncation specifies behavior following a loss of scale
by an exact numeric datatype during an implicit datatype conversion.
(When an explicit conversion results in a loss of scale, the results are
truncated without warning.) The default setting, arithabort
numeric_truncation on, aborts the statement that causes the error but
continues to process other statements in the transaction or batch. If you set
arithabort numeric_truncation off, Adaptive Server truncates the query
results and continues processing.

The arithignore option determines whether Adaptive Server prints a warning
message after an overflow error. By default, the arithignore option is turned off.
This causes Adaptive Server to display a warning message after any query that
results in numeric overflow. To ignore overflow errors, use set arithignore on.

Standards and compliance
Table 1-5 lists the ANSI SQL standards and compliance levels for
Transact-SQL datatypes.

Exact numeric datatypes

12 Adaptive Server Enterprise

Table 1-5: ANSI SQL standards and compliance levels for Transact-SQL
datatypes

Exact numeric datatypes
Use the exact numeric datatypes when you must represent a value exactly.
Adaptive Server provides exact numeric types for both integers (whole
numbers) and numbers with a decimal portion.

Transact-SQL – ANSI SQL
datatypes

Transact-SQL extensions –
User-defined datatypes

• char

• varchar

• smallint

• int

• bigint

• decimal

• numeric

• float

• real

• date

• time

• double precision

• binary

• varbinary

• bit

• nchar

• datetime

• smalldatetime

• tinyint

• unsigned smallint

• unsigned int

• unsigned bigint

• money

• smallmoney

• text

• unitext

• image

• nvarchar

• unichar

• univarchar

• sysname

• longsysname

• timestamp

CHAPTER 1 System and User-Defined Datatypes

Reference Manual: Building Blocks 13

Integer types
Adaptive Server provides the following exact numeric datatypes to store
integers: bigint, int (or integer), smallint, tinyint and each of their unsigned
counterparts. Choose the integer type based on the expected size of the
numbers to be stored. Internal storage size varies by type, as shown in Table 1-
6.

Table 1-6: Integer datatypes

Entering integer data Enter integer data as a string of digits without commas. Integer data can include
a decimal point as long as all digits to the right of the decimal point are zeros.
The smallint, integer, and bigint datatypes can be preceded by an optional plus
or minus sign. The tinyint datatype can be preceded by an optional plus sign.

Table 1-7 shows some valid entries for a column with a datatype of integer and
indicates how isql displays these values:

Table 1-7: Valid integer values

Table 1-8 lists some invalid entries for an integer column:

Datatype Stores Bytes of storage

bigint Whole numbers between -263 and 263 - 1 (from -9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807, inclusive.

8

int[eger] Whole numbers between-231 and 231 - 1 (-2,147,483,648 and 2,147,483,647),
inclusive.

4

smallint Whole numbers between -215 and 215 -1 (-32,768 and 32,767), inclusive. 2

tinyint Whole numbers between 0 and 255, inclusive. (Negative numbers are not
permitted.)

1

unsigned
bigint

Whole numbers between 0 and 18,446,744,073,709,551,615 8

unsigned
int

Whole numbers between 0 and 4,294,967,295 4

unsigned
smallint

Whole numbers between 0 and 65,535 2

Value entered Value displayed

2 2

+2 2

-2 -2

2. 2

2.000 2

Exact numeric datatypes

14 Adaptive Server Enterprise

Table 1-8: Invalid integer values

Decimal datatypes
Adaptive Server provides two other exact numeric datatypes, numeric and
dec[imal], for numbers that include decimal points. The numeric and decimal
datatypes are identical in all respects but one: only numeric datatypes with a
scale of 0 and integer datatypes can be used for the IDENTITY column.

Specifying precision
and scale

The numeric and decimal datatypes accept two optional parameters, precision
and scale, enclosed in parentheses and separated by a comma:

datatype [(precision [, scale])]

Adaptive Server treats each combination of precision and scale as a distinct
datatype. For example, numeric(10,0) and numeric(5,0) are two separate
datatypes. The precision and scale determine the range of values that can be
stored in a decimal or numeric column:

• The precision specifies the maximum number of decimal digits that can be
stored in the column. It includes all digits, both to the right and to the left
of the decimal point. You can specify precisions ranging from 1 digit to 38
digits or use the default precision of 18 digits.

• The scale specifies the maximum number of digits that can be stored to the
right of the decimal point. The scale must be less than or equal to the
precision. You can specify a scale ranging from 0 digits to 38 digits, or use
the default scale of 0 digits.

Storage size The storage size for a numeric or decimal column depends on its precision. The
minimum storage requirement is 2 bytes for a 1- or 2-digit column. Storage size
increases by approximately 1 byte for each additional 2 digits of precision, up
to a maximum of 17 bytes.

Use the following formula to calculate the exact storage size for a numeric or
decimal column:

ceiling (precision / log10(256)) + 1

For example, the storage size for a numeric(18,4) column is 9 bytes.

Value entered Type of error

2,000 Commas not allowed.

2- Minus sign should precede digits.

3.45 Digits to the right of the decimal point are nonzero digits.

CHAPTER 1 System and User-Defined Datatypes

Reference Manual: Building Blocks 15

Entering decimal data Enter decimal and numeric data as a string of digits preceded by an optional plus
or minus sign and including an optional decimal point. If the value exceeds
either the precision or scale specified for the column, Adaptive Server returns
an error message. Exact numeric types with a scale of 0 are displayed without
a decimal point.

Table 1-9 shows some valid entries for a column with a datatype of
numeric(5,3) and indicates how these values are displayed by isql:

Table 1-9: Valid decimal values

Table 1-10 shows some invalid entries for a column with a datatype of
numeric(5,3):

Table 1-10: Invalid decimal values

Standards and compliance
Transact-SQL provides the smallint, int, bigint, numeric, and decimal ANSI SQL
exact numeric datatypes. The unsigned bigint, unsigned int, unsigned smallint,
and tinyint type is a Transact-SQL extension.

Value entered Value displayed

12.345 12.345

+12.345 12.345

-12.345 -12.345

12.345000 12.345

12.1 12.100

12 12.000

Value entered Type of error

1,200 Commas not allowed.

12- Minus sign should precede digits.

12.345678 Too many nonzero digits to the right of the decimal point.

Approximate numeric datatypes

16 Adaptive Server Enterprise

Approximate numeric datatypes
Use the approximate numeric types, float, double precision, and real, for
numeric data that can tolerate rounding. The approximate numeric types are
especially suited to data that covers a wide range of values. They support all
aggregate functions and all arithmetic operations except modulo.

Understanding approximate numeric datatypes
Approximate numeric datatypes, used to store floating-point numbers, are
inherently slightly inaccurate in their representation of real numbers—hence
the name “approximate numeric.” To use these datatypes, you must understand
their limitations.

When a floating-point number is printed or displayed, the printed
representation is not quite the same as the stored number, and the stored
number is not quite the same as the number that the user entered. Most of the
time, the stored representation is close enough, and software makes the printed
output look just like the original input, but you must understand the inaccuracy
if you plan to use floating-point numbers for calculations, particularly if you
are doing repeated calculations using approximate numeric datatypes—the
results can be surprisingly and unexpectedly inaccurate.

The inaccuracy occurs because floating-point numbers are stored in the
computer as binary fractions (that is, as a representative number divided by a
power of 2), but the numbers we use are decimal (powers of 10). This means
that only a very small set of numbers can be stored accurately: 0.75 (3/4) can
be stored accurately because it is a binary fraction (4 is a power of 2); 0.2 (2/10)
cannot (10 is not a power of 2).

Some numbers contain too many digits to store accurately. double precision is
stored as 8 binary bytes and can represent about 17 digits with reasonable
accuracy. real is stored as 4 binary bytes and can represent only about 6 digits
with reasonable accuracy.

If you begin with numbers that are almost correct, and perform computations
with them using other numbers that are almost correct, you can easily end up
with a result that is not even close to being correct. If these considerations are
important to your application, use an exact numeric datatype.

CHAPTER 1 System and User-Defined Datatypes

Reference Manual: Building Blocks 17

Range, precision, and storage size
The real and double precision types are built on types supplied by the operating
system. The float type accepts an optional binary precision in parentheses. float
columns with a precision of 1–15 are stored as real; those with higher precision
are stored as double precision.

The range and storage precision for all three types is machine-dependent.

Table 1-11 shows the range and storage size for each approximate numeric
type. isql displays only 6 significant digits after the decimal point and rounds
the remainder:

Table 1-11: Approximate numeric datatypes

Entering approximate numeric data
Enter approximate numeric data as a mantissa followed by an optional
exponent:

• The mantissa is a signed or unsigned number, with or without a decimal
point. The column’s binary precision determines the maximum number of
binary digits allowed in the mantissa.

• The exponent, which begins with the character “e” or “E,” must be a whole
number.

The value represented by the entry is the following product:

mantissa * 10EXPONENT

For example, 2.4E3 represents the value 2.4 times 103, or 2400.

Values that may be entered by Open Client clients
“NaN” and “Inf” are special values that the floating point number standard uses
to represent values that are “not a number” and “infinity,” respectively.
Adaptive Server does not usually permit these values, but Open Client clients,
particularly native-mode bcp, can force these values into tables.

Datatype Bytes of storage

float[(default precision)] 4 for default precision < 16

8 for default precision >= 16

double precision 8

real 4

Money datatypes

18 Adaptive Server Enterprise

Standards and compliance
ANSI SQL – Compliance level: The float, double precision, and real datatypes
are entry-level compliant.

Money datatypes
Use the money and smallmoney datatypes to store monetary data. You can use
these types for U.S. dollars and other decimal currencies, but Adaptive Server
provides no means to convert from one currency to another. You can use all
arithmetic operations except modulo, and all aggregate functions, with money
and smallmoney data.

Accuracy
Both money and smallmoney are accurate to one ten-thousandth of a monetary
unit, but they round values up to two decimal places for display purposes. The
default print format places a comma after every three digits.

Range and storage size
Table 1-12 summarizes the range and storage requirements for money
datatypes:

Table 1-12: Money datatypes

Entering monetary values
Monetary values entered with E notation are interpreted as float. This may
cause an entry to be rejected or to lose some of its precision when it is stored
as a money or smallmoney value.

Datatype Range Bytes of storage

money Monetary values between +922,337,203,685,477.5807 and
-922,337,203,685,477.5808

8

smallmoney Monetary values between +214,748.3647 and -214,748.3648 4

CHAPTER 1 System and User-Defined Datatypes

Reference Manual: Building Blocks 19

money and smallmoney values can be entered with or without a preceding
currency symbol, such as the dollar sign ($), yen sign (¥), or pound sterling sign
(£). To enter a negative value, place the minus sign after the currency symbol.
Do not include commas in your entry.

Standards and compliance
ANSI SQL – The money and smallmoney datatypes are Transact-SQL
extensions.

Timestamp datatype
Use the user-defined timestamp datatype in tables that are to be browsed in
Client-Library™ applications (see “Browse Mode” for more information).
Adaptive Server updates the timestamp column each time its row is modified.
A table can have only one column of timestamp datatype.

Creating a timestamp column
If you create a column named timestamp without specifying a datatype,
Adaptive Server defines the column as a timestamp datatype:

create table testing
(c1 int, timestamp, c2 int)

You can also explicitly assign the timestamp datatype to a column named
timestamp:

create table testing
(c1 int, timestamp timestamp, c2 int)

or to a column with another name:

create table testing
(c1 int, t_stamp timestamp,c2 int)

You can create a column named timestamp and assign it another datatype
(although this may be confusing to other users and does not allow the use of the
browse functions in Open Client™ or with the tsequal function):

create table testing

Date and time datatypes

20 Adaptive Server Enterprise

(c1 int, timestamp datetime)

Date and time datatypes
Use datetime, smalldatetime, date, and time to store absolute date and time
information. Use timestamp to store binary-type information.

Adaptive Server has various ways to identify date and time. In versions earlier
than 12.5.1, only datetime and smalldatetime were available. As of version
12.5.1, date and time are these separate datatypes:

• date

• time

• smalldatetime

• datetime

The default display format for dates is “Apr 15 1987 10:23PM”. You can use
the convert function for other styles of date display. You can also perform some
arithmetic calculations on date and time values with the built-in date functions,
though Adaptive Server may round or truncate millisecond values.

• datetime columns hold dates between January 1, 1753 and December 31,
9999. datetime values are accurate to 1/300 second on platforms that
support this level of granularity. Storage size is 8 bytes: 4 bytes for the
number of days since the base date of January 1, 1900 and 4 bytes for the
time of day.

• smalldatetime columns hold dates from January 1, 1900 to June 6, 2079,
with accuracy to the minute. Its storage size is 4 bytes: 2 bytes for the
number of days after January 1, 1900, and 2 bytes for the number of
minutes after midnight.

• date columns hold dates from January 1, 0001 to December 31, 9999.
Storage size is 4 bytes.

• time is between 00:00:00:000 and 23:59:59:999. You can use either
military time or 12AM for noon and 12PM for midnight. A time value
must contain either a colon or the AM or PM signifier. AM or PM may be
in either uppercase or lowercase.

When entering date and time information, always enclose the time or date in
single or double quotes.

CHAPTER 1 System and User-Defined Datatypes

Reference Manual: Building Blocks 21

Range and storage requirements
Table 1-13 summarizes the range and storage requirements for the datetime,
smalldatetime, date, and time datatypes:

Table 1-13: Transact-SQL datatypes for storing dates and times

Entering date and time data
The datetime and smalldatetime datatypes consist of a date portion either
followed by or preceded by a time portion. (You can omit either the date or the
time, or both.) The date datatype has only a date and the time datatype has only
the time. You must enclose values in single or double quotes.

Entering the date Dates consist of a month, day, and year and can be entered in a variety of
formats for date, datetime, and smalldatetime:

• You can enter the entire date as an unseparated string of 4, 6, or 8 digits,
or use slash (/), hyphen (-), or period (.) separators between the date parts.

• When entering dates as unseparated strings, use the appropriate
format for that string length. Use leading zeros for single-digit years,
months, and days. Dates entered in the wrong format may be
misinterpreted or result in errors.

• When entering dates with separators, use the set dateformat option to
determine the expected order of date parts. If the first date part in a
separated string is four digits, Adaptive Server interprets the string as
yyyy-mm-dd format.

• Some date formats accept 2-digit years (yy):

• Numbers less than 50 are interpreted as 20yy. For example, 01 is
2001, 32 is 2032, and 49 is 2049.

• Numbers equal to or greater than 50 are interpreted as 19yy. For
example, 50 is 1950, 74 is 1974, and 99 is 1999.

Datatype Range Bytes of storage

datetime January 1, 1753 through December 31, 9999 8

smalldatetime January 1, 1900 through June 6, 2079 4

date January 1, 0001 to December 31, 9999 4

time 12:00:00 AM to 11:59:59:999 PM 4

Date and time datatypes

22 Adaptive Server Enterprise

• You can specify the month as either a number or a name. Month names and
their abbreviations are language-specific and can be entered in uppercase,
lowercase, or mixed case.

• If you omit the date portion of a datetime or smalldatetime value, Adaptive
Server uses the default date of January 1, 1900.

Table 1-14 describes the acceptable formats for entering the date portion of a
datetime or smalldatetime value:

Table 1-14: Date formats for date and time datatypes

Date format Interpretation Sample entries Meaning

4-digit string with no separators Interpreted as yyyy. Date defaults to
Jan 1 of the specified year.

“1947” Jan 1 1947

6-digit string with no separators Interpreted as yymmdd.
For yy < 50, year is 20yy.
For yy >= 50, year is 19yy.

“450128”

“520128”

Jan 28 2045

Jan 28 1952

8-digit string with no separators Interpreted as yyyymmdd. “19940415” Apr 15 1994

String consisting of 2-digit
month, day, and year separated
by slashes, hyphens, or periods,
or a combination of the above

The dateformat and language set
options determine the expected order
of date parts. For us_english, the
default order is mdy.

For yy < 50, year is interpreted as
20yy. For yy >= 50, year is interpreted
as 19yy.

“4/15/94”
“4.15.94”
“4-15-94”
“04.15/94”

All of these entries
are interpreted as
Apr 15 1994 when
the dateformat
option is set to
mdy.

String consisting of 2-digit
month, 2-digit day, and 4-digit
year separated by slashes,
hyphens, or periods, or a
combination of the above

The dateformat and language set
options determine the expected order
of date parts. For us_english, the
default order is mdy.

“04/15.1994” Interpreted as Apr
15 1994 when the
dateformat option
is set to mdy.

Month is entered in character
form (either full month name or
its standard abbreviation),
followed by an optional comma

If 4-digit year is entered, date parts
can be entered in any order.

“April 15, 1994”
“1994 15 apr”
“1994 April 15”
“15 APR 1994”

All of these entries
are interpreted as
Apr 15 1994.

If day is omitted, all 4 digits of year
must be specified. Day defaults to the
first day of the month.

“apr 1994” Apr 1 1994

If year is only 2 digits (yy), it is
expected to appear after the day.
For yy < 50, year is interpreted as
20yy. For yy >= 50, year is interpreted
as 19yy.

“mar 16 17”

“apr 15 94”

Mar 16 2017

Apr 15 1994

The empty string “” Date defaults to Jan 1 1900. “” Jan 1 1900

CHAPTER 1 System and User-Defined Datatypes

Reference Manual: Building Blocks 23

Entering the time The time component of a datetime, smalldatetime, or time value must be
specified as follows:

hours[:minutes[:seconds[:milliseconds]] [AM | PM]

• Use 12AM for midnight and 12PM for noon.

• A time value must contain either a colon or an AM or PM signifier. The
AM or PM can be entered in uppercase, lowercase, or mixed case.

• The seconds specification can include either a decimal portion preceded
by a decimal point, or a number of milliseconds preceded by a colon. For
example, “15:30:20:1” means twenty seconds and one millisecond past
3:30 PM; “15:30:20.1” means twenty and one-tenth of a second past 3:30
PM.

• If you omit the time portion of a datetime or smalldatetime value, Adaptive
Server uses the default time of 12:00:00:000AM.

Displaying formats for
datetime,
smalldatetime, and
date values

The display format for datetime and smalldatetime values is “Mon dd yyyy
hh:mmAM” (or “PM”); for example, “Apr 15 1988 10:23PM”. To display
seconds and milliseconds, and to obtain additional date styles and date-part
orders, use the convert function to convert the data to a character string.
Adaptive Server may round or truncate millisecond values.

Table 1-15 lists some examples of datetime entries and their display values:

Table 1-15: Examples of datetime and date entries

Displaying formats for
time value

The display format for time values is “hh:mm:ss:mmmAM” (or “PM”); for
example, “10:23:40:022PM.

Entry Value displayed

“1947” Jan 1 1947 12:00AM

“450128 12:30:1PM” Jan 28 2045 12:30PM

“12:30.1PM 450128” Jan 28 2045 12:30PM

“14:30.22” Jan 1 1900 2:30PM

“4am” Jan 1 1900 4:00AM

Examples of date

“1947” Jan 1 1947

“450128” Jan 28 2045

“520317” Mar 17 1952

Date and time datatypes

24 Adaptive Server Enterprise

Table 1-16: Examples of time entries

Finding values that
match a pattern

Use the like keyword to look for dates that match a particular pattern. If you use
the equality operator (=) to search date or time values for a particular month,
day, and year, Adaptive Server returns only those values for which the time is
precisely 12:00:00:000AM.

For example, if you insert the value “9:20” into a column named arrival_time,
Adaptive Server converts the entry into “Jan 1 1900 9:20AM.” If you look for
this entry using the equality operator, it is not found:

where arrival_time = "9:20" /* does not match */

You can find the entry using the like operator:

where arrival_time like "%9:20%"

When using like, Adaptive Server first converts the dates to datetime or date
format and then to varchar. The display format consists of the 3-character
month in the current language, 2 characters for the day, 4 characters for the
year, the time in hours and minutes, and “AM” or “PM.”

When searching with like, you cannot use the wide variety of input formats that
are available for entering the date portion of datetime, smalldatetime, date, and
time values. Since the standard display formats do not include seconds or
milliseconds, you cannot search for seconds or milliseconds with like and a
match pattern, unless you are also using style 9 or 109 and the convert function.

If you are using like, and the day of the month is a number between 1 and 9,
insert 2 spaces between the month and the day to match the varchar conversion
of the datetime value. Similarly, if the hour is less than 10, the conversion
places 2 spaces between the year and the hour. The following clause with 1
space between “May” and “2”) finds all dates from May 20 through May 29,
but not May 2:

like "May 2%"

You do not need to insert the extra space with other date comparisons, only
with like, since the datetime values are converted to varchar only for the like
comparison.

Manipulating dates You can do some arithmetic calculations on date and time datatypes values with
the built-in date functions. See “Date functions” on page 64.

Entry Value displayed

"12:12:00” 12:12PM

“01:23PM” or “01:23:1PM” 1:23PM

“02:24:00:001” 2:24AM

CHAPTER 1 System and User-Defined Datatypes

Reference Manual: Building Blocks 25

Standards and compliance
ANSI SQL – Compliance level: The datetime and smalldatetime datatypes are
Transact-SQL extensions. date and time datatypes are entry-level compliant.

Character datatypes
Which datatype you use for a situation depends on the type of data you are
storing:

• Use the character datatypes to store strings consisting of letters, numbers,
and symbols.

• Use varchar(n) and char(n) for both single-byte character sets such as
us_english and for multibyte character sets such as Japanese.

• Use the unichar(n) and univarchar(n) datatypes to store Unicode characters.
They are useful for single-byte or multibyte characters when you need a
fixed number of bytes per character.

• Use the fixed-length datatype, nchar(n) , and the variable-length datatype,
nvarchar(n), for both single-byte and multibyte character sets, such as
Japanese. The difference between nchar(n) and char(n) and nvarchar(n) and
varchar(n) is that both nchar(n) and nvarchar(n) allocate storage based on n
times the number of bytes per character (based on the default character
set). char(n) and varchar(n) allocate n bytes of storage.

• Character datatypes can store a maximum of a page size worth of data

• Use the text datatype (described in “text, image, and unitext datatypes” on
page 34)—or multiple rows in a subtable—for strings longer than the char
or varchar dataype allow.

unichar, univarchar
You can use the unichar and univarchar datatypes anywhere that you can use
char and varchar character datatypes, without having to make syntax changes.

Character datatypes

26 Adaptive Server Enterprise

In Adaptive Server version 12.5.1 and later, queries containing character
literals that cannot be represented in the server’s character set are automatically
promoted to the unichar datatype so you do not have to make syntax changes
for data manipulation language (DML) statements. Additional syntax is
available for specifying arbitrary characters in character literals, but the
decision to “promote” a literal to unichar is based solely on representability.

With data definition language (DDL) statements, the syntax changes required
are minimal. For example, in the create table command, the size of a Unicode
column is specified in units of 16-bit Unicode values, not bytes, thereby
maintaining the similarity between char(200) and unichar(200). sp_help, which
reports on the lengths of columns, uses the same units. The multiplication
factor (2) is stored in the new global variable @@unicharsize.

See Chapter 8, “Configuring Character Sets, Sort Orders, and Languages,” in
the System Administration Guide for more information about Unicode.

Length and storage size
Character variables strip the trailing spaces from strings when the variable is
populated in a varchar column of a cursor.

Use n to specify the number of bytes of storage for char and varchar datatypes.
For unichar, use n to specify the number of Unicode characters (the amount of
storage allocated is 2 bytes per character). For nchar and nvarchar, n is the
number of characters (the amount of storage allocated is n times the number of
bytes per characer for the server’s current default character set).

If you do not use n to specify the length:

• The default length is 1 byte for columns created with create table, alter
table, and variables created with declare.

• The default length is 30 bytes for values created with the convert function.

Entries shorter than the assigned length are blank-padded; entries longer than
the assigned length are truncated without warning, unless the string_rtruncation
option to the set command is set to on. Fixed-length columns that allow nulls
are internally converted to variable-length columns.

CHAPTER 1 System and User-Defined Datatypes

Reference Manual: Building Blocks 27

Use n to specify the maximum length in characters for the variable-length
datatypes, varchar(n), univarchar(n), and nvarchar(n). Data in variable-length
columns is stripped of trailing blanks; storage size is the actual length of the
data entered. Data in variable-length variables and parameters retains all
trailing blanks, but is not padded to the defined length. Character literals are
treated as variable-length datatypes.

Fixed-length columns tend to take more storage space than variable-length
columns, but are accessed somewhat faster. Table 1-17 summarizes the storage
requirements of the different character datatypes:

Table 1-17: Character datatypes

Determining column
length with system
functions

Use the char_length string function and datalength system function to
determine column length:

• char_length returns the number of characters in the column, stripping
trailing blanks for variable-length datatypes.

• datalength returns the number of bytes, stripping trailing blanks for data
stored in variable-length columns.

When a char value is declared to allow NULL values, Adaptive Server stores
it internally as a varchar.

If the min or max aggregate functions are used on a char column, the result
returned is varchar, and is therefore stripped of all trailing spaces.

Entering character data
Character strings must be enclosed in single or double quotes. If you use set
quoted_identifier on, use single quotes for character strings; otherwise,
Adaptive Server treats them as identifiers.

Strings that include the double-quote character should be surrounded by single
quotes. Strings that include the single-quote character should be surrounded by
double quotes. For example:

Datatype Stores Bytes of storage

char(n) Character n

unichar(n) Unicode character n*@@unicharsize (@@unicharsize equals 2)

nchar(n) National character n * @@ncharsize

varchar(n) Character varying Actual number of characters entered

univarchar(n) Unicode character varying Actual number of characters * @@unicharsize

nvarchar(n) National character varying Actual number of characters * @@ncharsize

Character datatypes

28 Adaptive Server Enterprise

'George said, "There must be a better way."'
"Isn't there a better way?"

An alternative is to enter two quotation marks for each quotation mark you
want to include in the string. For example:

"George said, ""There must be a better way.""
'Isn''t there a better way?'

To continue a character string onto the next line of your screen, enter a
backslash (\) before going to the next line.

For more information about quoted identifiers, see the section “Delimited
identifiers”of the Transact SQL User’s Guide.

Entering Unicode characters

Optional syntax allows you to specify arbitrary Unicode characters. If a
character literal is immediately preceded by U& or u& (with no intervening
white space), the parser recognizes escape sequences within the literal. An
escape sequence of the form \xxxx (where xxxx represents four hexadecimal
digits) is replaced with the Unicode character whose scalar value is xxxx.
Similarly, an escape sequence of the form \+yyyyyy is replaced with the
Unicode character whose scalar value is yyyyyy. The escape sequence \\ is
replaced by a single \. For example, the following is equivalent to:

select * from mytable where unichar_column = U&'\4e94'

The U& or u& prefix simply enables the recognition of escapes. The datatype
of the literal is chosen solely on the basis of representability. Thus, for example,
the following two queries are equivalent:

select * from mytable where char_column = 'A'

select * from mytable where char_column = U&'\0041'

In both cases, the datatype of the character literal is char, since “A” is an ASCII
character, and ASCII is a subset of all Sybase-supported server character sets.

The U& and u& prefixes also work with the double-quoted character literals
and for quoted identifiers. However, quoted identifiers must be representable
in the server’s character set, insofar as all database objects are identified by
names in system tables, and all such names are of datatype char.

select * from mytable where unichar_column = ' '

CHAPTER 1 System and User-Defined Datatypes

Reference Manual: Building Blocks 29

Treatment of blanks
The following example creates a table named spaces that has both fixed- and
variable-length character columns:

create table spaces (cnot char(5) not null,
cnull char(5) null,
vnot varchar(5) not null,

vnull varchar(5) null,
explanation varchar(25) not null)

insert spaces values ("a", "b", "c", "d",
"pads char-not-null only")

insert spaces values ("1 ", "2 ", "3 ",
"4 ", "truncates trailing blanks")

insert spaces values (" e", " f", " g",
" h", "leading blanks, no change")

insert spaces values (" w ", " x ", " y ",
" z ", "truncates trailing blanks")

insert spaces values ("", "", "", "",
"empty string equals space")

select "[" + cnot + "]",
"[" + cnull + "]",
"[" + vnot + "]",
"[" + vnull + "]",

explanation from spaces
explanation

 ------- ------- ------- ------- --------------------
 [a] [b] [c] [d] pads char-not-null only
 [1] [2] [3] [4] truncates trailing blanks
 [e] [f] [g] [h] leading blanks, no change
 [w] [x] [y] [z] truncates trailing blanks
 [] [] [] [] empty string equals space

(5 rows affected)

This example illustrates how the column’s datatype and null type interact to
determine how blank spaces are treated:

• Only char not null and nchar not null columns are padded to the full width
of the column; char null columns are treated like varchar and nchar null
columns are treated like nvarchar.

• Only unichar not null columns are padded to the full width of the column;
unichar null columns are treated like univarchar.

• Preceding blanks are not affected.

Binary datatypes

30 Adaptive Server Enterprise

• Trailing blanks are truncated except for char, unichar, and nchar not null
columns.

• The empty string (“ ”) is treated as a single space. In char, nchar, and
unichar not null columns, the result is a column-length field of spaces.

Manipulating character data
You can use the like keyword to search character strings for particular
characters and the built-in string functions to manipulate their contents. You
can use strings consisting of numbers for arithmetic after being converted to
exact and approximate numeric datatypes with the convert function.

Standards and compliance
ANSI SQL – Compliance level: Transact-SQL provides the char and varchar
ANSI SQL datatypes. The nchar, nvarchar, unichar, and univarchar datatypes
are Transact-SQL extensions.

Binary datatypes
Use the binary datatypes, binary(n) and varbinary(n), to store raw binary data,
such as pictures, in a raw binary notation, up to the maximum column size for
your server’s logical page size.

Valid binary and varbinary entries
Binary data begins with the characters “0x” and can include any combination
of digits, and the uppercase and lowercase letters A through F.

Use n to specify the column length in bytes, or use the default length of 1 byte.
Each byte stores 2 binary digits. If you enter a value longer than n, Adaptive
Server truncates the entry to the specified length without warning or error.

Use the fixed-length binary type, binary(n), for data in which all entries are
expected to be approximately equal in length.

CHAPTER 1 System and User-Defined Datatypes

Reference Manual: Building Blocks 31

Use the variable-length binary type, varbinary(n), for data that is expected to
vary greatly in length.

Because entries in binary columns are zero-padded to the column length (n),
they may require more storage space than those in varbinary columns, but they
are accessed somewhat faster.

If you do not use n to specify the length:

• The default length is 1 byte for columns created with create table, alter
table, and variables created with declare.

• The default length is 30 bytes for values created with the convert function.

Entries of more than the maximum column size
Use the image datatype to store larger blocks of binary data (up to
2,147,483,647 bytes) on external data pages. You cannot use the image
datatype for variables or for parameters in stored procedures. For more
information, see “text, image, and unitext datatypes” on page 34.

Treatment of trailing zeros
All binary not null columns are padded with zeros to the full width of the
column. Trailing zeros are truncated in all varbinary data and in binary null
columns, since columns that accept null values must be treated as
variable-length columns.

The following example creates a table with all four variations of binary and
varbinary datatypes, NULL, and NOT NULL. The same data is inserted in all
four columns and is padded or truncated according to the datatype of the
column.

create table zeros (bnot binary(5) not null,
 bnull binary(5) null,
 vnot varbinary(5) not null,
 vnull varbinary(5) null)

insert zeros values (0x12345000, 0x12345000, 0x12345000, 0x12345000)
insert zeros values (0x123, 0x123, 0x123, 0x123)

select * from zeros

Binary datatypes

32 Adaptive Server Enterprise

bnot bnull vnot vnull
------------ --------- ---------- ---------
0x1234500000 0x123450 0x123450 0x123450
0x0123000000 0x0123 0x0123 0x0123

Because each byte of storage holds 2 binary digits, Adaptive Server expects
binary entries to consist of the characters “0x” followed by an even number of
digits. When the “0x” is followed by an odd number of digits, Adaptive Server
assumes that you omitted the leading 0 and adds it for you.

Input values “0x00” and “0x0” are stored as “0x00” in variable-length binary
columns (binary null, image, and varbinary columns). In fixed-length binary
(binary not null) columns, the value is padded with zeros to the full length of the
field:

insert zeros values (0x0, 0x0,0x0, 0x0)
select * from zeros where bnot = 0x00
bnot bnull vnot vnull
---------- ------ ----- ------------
0x0000000000 0x00 0x00 0x00

If the input value does not include the “0x”, Adaptive Server assumes that the
value is an ASCII value and converts it. For example:

create table sample (col_a binary(8))

insert sample values (’002710000000ae1b’)

select * from sample
col_a

0x3030323731303030

Platform dependence
The exact form in which you enter a particular value depends upon the platform
you are using. Therefore, calculations involving binary data can produce
different results on different machines.

You cannot use the aggregate functions sum or avg with the binary datatypes.

For platform-independent conversions between hexadecimal strings and
integers, use the inttohex and hextoint functions rather than the
platform-specific convert function. For details, see “Datatype conversion
functions” on page 55.

CHAPTER 1 System and User-Defined Datatypes

Reference Manual: Building Blocks 33

Standards and compliance
ANSI SQL – Compliance level: The binary and varbinary datatypes are
Transact-SQL extensions.

bit datatype
Use the bit datatype for columns that contain true/false and yes/no types of data.
The status column in the syscolumns system table indicates the unique offset
position for bit datatype columns.

bit columns hold either 0 or 1. Integer values other than 0 or 1 are accepted, but
are always interpreted as 1.

Storage size is 1 byte. Multiple bit datatypes in a table are collected into bytes.
For example, 7 bit columns fit into 1 byte; 9 bit columns take 2 bytes.

Columns with a datatype of bit cannot be NULL and cannot have indexes on
them.

Standards and compliance
ANSI SQL – Compliance level: Transact-SQL extension.

sysname and longsysname datatypes
sysname and longsysname are user-defined datatypes that are distributed on the
Adaptive Server installation tape and used in the system tables. The definitions
are:

• sysname – varchar(30) "not null"

• longsysname – varchar(255) "not null"

You can declare a column, parameter, or variable to be of types sysname and
longsysname. Alternately, you can also create a user-defined datatype with a
base type of sysname and longsysname, and then define columns, parameters,
and variables with the user-defined datatype.

text, image, and unitext datatypes

34 Adaptive Server Enterprise

Standards and compliance
ANSI SQL – Compliance level: All user-defined datatypes, including sysname
and longsysname, are Transact-SQL extensions.

text, image, and unitext datatypes
text columns are variable-length columns that can hold up to 2,147,483,647
(231 - 1) bytes of printable characters.

The variable-length unitext datatype can hold up to 1,073,741,823 Unicode
characters (2,147,483,646 bytes).

image columns are variable-length columns that can hold up to 2,147,483,647
(231 - 1) bytes of raw binary data.

A key distinction between text and image is that text is subject to character-set
conversion if you are not using the default character set of Adaptive Server
default. image is not subject to character-set conversion.

Define a text, unitext, or image column as you would any other column, with a
create table or alter table statement. text, unitext, or image datatype definitions
do not include lengths. text, unitext, and image columns do permit null values.
Their column definition takes the form:

column_name {text | image | unitext} [null]

For example, the create table statement for the author’s blurbs table in the
pubs2 database with a text column, blurb, that permits null values, is:

create table blurbs
(au_id id not null,
copy text null)

This example creates a unitext column that allows null values:

create table tb (ut unitext null)

To create the au_pix table in the pubs2 database with an image column:

create table au_pix
(au_id char(11) not null,
pic image null,
format_type char(11) null,
bytesize int null,
pixwidth_hor char(14) null,
pixwidth_vert char(14) null)

CHAPTER 1 System and User-Defined Datatypes

Reference Manual: Building Blocks 35

Adaptive Server stores text, unitext, and image data in a linked list of data pages
that are separate from the rest of the table. Each text, unitext, or image page
stores one logical page size worth of data (2, 4, 8, or 16K). All text, unitext, and
image data for a table is stored in a single page chain, regardless of the number
of text, unitext, and image columns the table contains.

You can place subsequent allocations for text, unitext, and image data pages on
a different logical device with sp_placeobject.

image values that have an odd number of hexadecimal digits are padded with a
leading zero (an insert of “0xaaabb” becomes “0x0aaabb”).

You can use the partition option of the alter table command to partition a table
that contains text, unitext, and image columns. Partitioning the table creates
additional page chains for the other columns in the table, but has no effect on
the way the text, unitext, and image columns are stored.

You can use unitext anywhere you use the text datatype, with the same
semantics. unitext columns are stored in UTF-16 encoding, regardless of the
Adaptive Server default character set.

Data structures used for storing text, unitext, and image data
When you allocate text, unitext, or image data, a 16-byte text pointer is inserted
into the row you allocated. Part of this text pointer refers to a text page number
at the head of the text, unitext, or image data. This text pointer is known as the
first text page.

The first text page contains two parts:

• The text data page chain, which contains the text and image data and is a
double-linked list of text pages

• The optional text-node structure, which is used to access the user text data

Once an first text page is allocated for text, unitext, or image data, it is never
deallocated. If an update to an existing text, unitext,or image data row results in
fewer text pages than are currently allocated for this text, unitext, or image data,
Adaptive Server deallocates the extra text pages. If an update to text, unitext, or
image data sets the value to NULL, all pages except the first text page are
deallocated.

Figure 1-1 shows the relationship between the data row and the text pages.

text, image, and unitext datatypes

36 Adaptive Server Enterprise

Figure 1-1: Relationship between the text pointer and data rows

In Figure 1-1, columns c_text and c_image are text and image columns
containing the pages at the bottom of the picture.

Initializing text, unitext, and image columns
text, unitext, and image columns are not initialized until you update them or
insert a non-null value. Initialization allocates at least one data page for each
non-null text, unitext, or image data value. It also creates a pointer in the table
to the location of the text, unitext, or image data.

For example, the following statements create the table testtext and initialize the
blurb column by inserting a non-null value. The column now has a valid text
pointer, and the first text page has been allocated.

create table texttest
(title_id varchar(6), blurb text null, pub_id char(4))

insert texttest values
("BU7832", "Straight Talk About Computers is an
annotated analysis of what computers can do for you: a
no-hype guide for the critical user.", "1389")

The following statements create a table for image values and initialize the
image column:

create table imagetest
(image_id varchar(6), imagecol image null, graphic_id
char(4))

te
xt

 a
nd

 im
ag

e
pa

ge
s

C_int

C
_t

ex
t

C_float

C
_i

m
ag

e

C_char

First text page First text page

Data row
includes 5
columns

CHAPTER 1 System and User-Defined Datatypes

Reference Manual: Building Blocks 37

insert imagetest values
("94732", 0x0000008300000000000100000000013c, "1389")

Note Surround text values with quotation marks and precede image values with
the characters “0x”.

For information on inserting and updating text, unitext, and image data with
Client-Library programs, see the Client-Library/C Reference Manual.

Defining unitext columns

You can define a unitext column the same way you define other datatypes, using
create table or alter table statements. You do not define the length of a unitext
column, and the column can be null.

This example creates a unitext column that allows null values:

create table tb (ut unitext null)

default unicode sort order defines the sort order for unitext columns for pattern
matching in like clauses and in the patindex function, this is independent of the
Adaptive Server default sort order.

Saving space by allowing NULL
To save storage space for empty text, unitext, or image columns, define them to
permit null values and insert nulls until you use the column. Inserting a null
value does not initialize a text, unitext, or image column and, therefore, does not
create a text pointer or allocate storage. For example, the following statement
inserts values into the title_id and pub_id columns of the testtext table created
above, but does not initialize the blurb text column:

insert texttest
(title_id, pub_id) values ("BU7832", "1389")

Getting information from sysindexes
Each table with text, unitext, or image columns has an additional row in
sysindexes that provides information about these columns. The name column
in sysindexes uses the form “tablename.” The indid is always 255. These
columns provide information about text storage:

text, image, and unitext datatypes

38 Adaptive Server Enterprise

Table 1-18: Storage of text and image data

You can query the sysindexes table for information about these columns. For
example, the following query reports the number of data pages used by the
blurbs table in the pubs2 database:

select name, data_pages(db_id(), object_id("blurbs"), indid)
from sysindexes
where name = "tblurbs"

Note The system tables poster shows a one-to-one relationship between
sysindexes and systabstats. This is correct, except for text and image columns,
for which information is not kept in systabstats.

Using readtext and writetext
Before you can use writetext to enter text data or readtext to read it, you must
initialize the text column. For details, see readtext and writetext in Reference
Manual: Commands.

Using update to replace existing text, unitext, and image data with NULL
reclaims all allocated data pages except the first page, which remains available
for future use of writetext. To deallocate all storage for the row, use delete to
remove the entire row.

There are restrictions for using readtext and writetext on a column defined for
unitext. For more information see the “Usage” sections under readtext and
writetext in the Reference Manual: Commands.

Determining how much space a column uses
sp_spaceused provides information about the space used for text data as
index_size:

sp_spaceused blurbs

Column Description

ioampg Pointer to the allocation page for the text page chain

first Pointer to the first page of text data

root Pointer to the last page

segment Number of the segment where the object resides

CHAPTER 1 System and User-Defined Datatypes

Reference Manual: Building Blocks 39

name rowtotal reserved data index_size unused
--------------- -------- --------- ------- ---------- ------
blurbs 6 32 KB 2 KB 14 KB 16 KB

Restrictions on text, image, and unitext columns
You cannot use text, image, or unitext columns:

• As parameters to stored procedures or as values passed to these parameters

• As local variables

• In order by clause, compute clause, group by, and union clauses

• In an index

• In subqueries or joins

• In a where clause, except with the keyword like

• With the + concatenation operator

Selecting text, unitext, and image data
The following global variables return information on text, unitext, and image
data:

Table 1-19: text , unitext, and image global variables

Variable Explanation

@@textptr The text pointer of the last text, unitext, or image column inserted or updated by a process. Do not
confuse this global variable with the textptr function.

@@textcolid ID of the column referenced by @@textptr.

@@textdbid ID of a database containing the object with the column referenced by @@textptr.

@@textobjid ID of the object containing the column referenced by @@textptr.

@@textsize Current value of the set textsize option, which specifies the maximum length, in bytes, of text,
unitext, or image data to be returned with a select statement. It defaults to 32K. The maximum
size for @@textsize is 231 - 1 (that is, 2,147,483,647).

@@textts Text timestamp of the column referenced by @@textptr.

text, image, and unitext datatypes

40 Adaptive Server Enterprise

Converting text and image datatypes
You can explicitly convert text values to char, unichar, varchar, and univarchar,
and image values to binary or varbinary with the convert function, but you are
limited to the maximum length of the character and binary datatypes, which is
determined by the maximum column size for your server’s logical page size. If
you do not specify the length, the converted value has a default length of 30
bytes. Implicit conversion is not supported.

Converting to or from unitext
You can implicitly convert any character or binary datatype to unitext, as well
as explicitly convert to and from unitext to other datatypes. The conversion
result, however, is limited to the maximum length of the destination datatype.
When a unitext value cannot fit the destination buffer on a Unicode character
boundary, data is truncated. If you have enabled enable surrogate processing,
the unitext value is never truncated in the middle of a surrogate pair of values,
which means that fewer bytes may be returned after the datatype conversion.
For example, if a unitext column ut in table tb stores the string
“U+0041U+0042U+00c2” (U+0041 representing the Unicode character “A”),
this query returns the value “AB” if the server’s character set is UTF-8, because
U+00C2 is converted to 2-byte UTF-8 0xc382:

select convert(char(3), ut) from tb

Table 1-20: Converting to and from unitext

The alter table modify command does not support text, image, or unitext columns
to be the modified column. To migrate from a text to a unitext column:

• Use bcp out -Jutf8 out to copy text column data out

• Create a table with unitext columns

• Use bcp in -Jutf8 to insert data into the new table

These datatypes convert
implicitly to unitext

These datatypes convert
implicitly from unitext

These datatypes convert
explicitly from unitext

char, varchar, unichar, univarchar,
binary, varbinary, text, image

text, image char, varchar, unichar, univarchar,
binary, varbinary

CHAPTER 1 System and User-Defined Datatypes

Reference Manual: Building Blocks 41

Pattern matching in text data
Use the patindex function to search for the starting position of the first
occurrence of a specified pattern in a text, unitext, varchar, univarchar, unichar,
or char column. The % wildcard character must precede and follow the pattern
(except when you are searching for the first or last character).

You can also use the like keyword to search for a particular pattern. The
following example selects each text data value from the copy column of the
blurbs table that contains the pattern “Net Etiquette.”

select copy from blurbs
where copy like "%Net Etiquette%"

Duplicate rows
The pointer to the text, image, and unitext data uniquely identifies each row.
Therefore, a table that contains text, image, and unitext data does not contain
duplicate rows unless there are rows in which all text, image, and unitext data is
NULL. If this is the case, the pointer has not been initialized.

Standards and compliance
ANSI SQL – Compliance level: The text, image, and unitext datatypes are
Transact-SQL extensions.

User-defined datatypes
User-defined datatypes are built from the system datatypes and from the
sysname or longsysname user-defined datatypes. After you create a
user-defined datatype, you can use it to define columns, parameters, and
variables. Objects that are created from user-defined datatypes inherit the rules,
defaults, null type, and IDENTITY property of the user-defined datatype, as
well as inheriting the defaults and null type of the system datatypes on which
the user-defined datatype is based.

User-defined datatypes

42 Adaptive Server Enterprise

A user-defined datatype must be created in each database in which it will be
used. Create frequently used types in the model database. These types are
automatically added to each new database (including tempdb, which is used for
temporary tables) as it is created.

Adaptive Server allows you to create user-defined datatypes, based on any
system datatype, using sp_addtype. You cannot create a user-defined datatype
based on another user-defined datatype, such as timestamp or the tid datatype
in the pubs2 database.

The sysname and longsysname datatypes are exceptions to this rule. Though
sysname and longsysname are user-defined datatypes, you can use them to
build user-defined datatypes.

User-defined datatypes are database objects. Their names are case-sensitive
and must conform to the rules for identifiers.

You can bind rules to user-defined datatypes with sp_bindrule and bind defaults
with sp_bindefault.

By default, objects built on a user-defined datatype inherit the user-defined
datatype’s null type or IDENTITY property. You can override the null type or
IDENTITY property in a column definition.

Use sp_rename to rename a user-defined datatype.

Use sp_droptype to remove a user-defined datatype from a database.

Note You cannot drop a datatype that is already in use in a table.

Use sp_help to display information about the properties of a system datatype
or a user-defined datatype. You can also use sp_help to display the datatype,
length, precision, and scale for each column in a table.

Standards and compliance
ANSI SQL – Compliance level: User-defined datatypes are a Transact-SQL
extension.

Reference Manual: Building Blocks 43

C H A P T E R 2 Transact-SQL Functions

This chapter describes the Transact-SQL functions. Functions are used to
return information from the database. They are allowed in the select list,
in the where clause, and anywhere an expression is allowed. They are
often used as part of a stored procedure or program.

Types of functions
Table 2-1 lists the different types of Transact-SQL functions and describes
the type of information each returns.

Table 2-1: Types of Transact-SQL functions

Topics Page
Types of functions 43

Aggregate functions 49

Datatype conversion functions 55

Date functions 64

Mathematical functions 65

Security functions 66

String functions 67

System functions 68

Text and image functions 69

Type of function Description

Aggregate functions Generate summary values that appear as new columns or as additional rows in the
query results.

Datatype conversion functions Change expressions from one datatype to another and specify new display formats
for date and time information.

Date functions Perform computations on datetime, smalldatetime, date, and time values and their
components, date parts.

Mathematical functions Commonly needed for operations on mathematical data.

Security functions Security-related information.

String functions Operate on binary data, character strings, and expressions.

Types of functions

44 Adaptive Server Enterprise

Table 2-2 lists the functions in alphabetical order.

Table 2-2: List of Transact-SQL functions

System functions Retrieves special information from the database and database objects.

Text and image functions Supply values commonly needed for operations on text, unitext, and image data.

Type of function Description

Function Type Return value

abs on page 70 Mathematical The absolute value of an expression.

acos on page 71 Mathematical The angle (in radians) with a specified cosine.

ascii on page 72 String The ASCII code for the first character in an expression.

asin on page 73 Mathematical The angle (in radians) with a specified sine.

atan on page 74 Mathematical The angle (in radians) with a specified tangent.

atn2 on page 75 Mathematical The angle (in radians) with specified sine and cosine.

audit_event_name on
page 78

Security A description of an audit event

avg on page 76 Aggregate The numeric average of all (distinct) values.

biginttohex on page 80 Datatype
conversion

Returns the platform-independent hexadecimal equivalent of the
specified integer.

case on page 81 Allows SQL expressions to be written for conditional values. case
expressions can be used anywhere a value expression can be used.

cast on page 84 Datatype
conversion

A specified value, converted to another datatype

ceiling on page 87 Mathematical The smallest integer greater than or equal to the specified value.

char on page 89 String The character equivalent of an integer.

charindex on page 93 String Returns an integer representing the starting position of an expression.

char_length on page 91 String The number of characters in an expression.

col_length on page 96 System The defined length of a column.

col_name on page 97 System The name of the column with specified table and column IDs.

compare on page 98 System Returns the following values, based on the collation rules that you
chose:

• 1 – indicates that char_expression1 is greater than
char_expression2

• 0 – indicates that char_expression1 is equal to char_expression2

• -1 – indicates that char_expression1 is less than char_expression2

convert on page 103 Datatype
conversion

The specified value, converted to another datatype or a different
datetime display format.

cos on page 109 Mathematical The cosine of the specified angle (in radians).

cot on page 110 Mathematical The cotangent of the specified angle (in radians).

count on page 111 Aggregate The number of (distinct) non-null values as an integer.

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 45

count_big on page 113 Aggregrate The number of (distinct) non-null values as a bigint.

current_date on page
115

Date Returns the current date.

current_time on page
116

Date Returns the current time.

curunreservedpgs on
page 117

System The number of free pages in the specified disk piece.

data_pages on page
119

System The number of pages used by the specified table or index.

datalength on page 123 System The actual length, in bytes, of the specified column or string.

dateadd on page 124 Date The date produced by adding a given number of years, quarters, hours,
or other date parts to the specified date.

datediff on page 127 Date The difference between two date expressions.

datename on page 130 Date The name of the specified part of a date expression.

datepart on page 132 Date The integer value of the specified part of a date expression.

day on page 136 Date Returns an integer that represents the day in the datepart of a specified
date.

db_id on page 137 System The ID number of the specified database.

db_name on page 138 System The name of the database with a specified ID number.

degrees on page 139 Mathematical The size, in degrees, of an angle with a specified number of radians.

derived_stat on page
140

System Returns derived statistics for the specified object and index.

difference on page 143 String The difference between two soundex values.

exp on page 144 Mathematical The value that results from raising the constant e to the specified
power.

floor on page 145 Mathematical The largest integer that is less than or equal to the specified value.

get_appcontext on
page 147

Security Returns the value of the attribute in a specified context.

getdate on page 149 Date The current system date and time.

hextobigint on page
153

Datatype
conversion

The bigint value equivalent of a hexadecimal string

hextoint on page 154 Datatype
conversion

The platform-independent integer equivalent of the specified
hexadecimal string.

host_id on page 155 System Returns the client computer’s operating system process ID for the
current Adaptive Server client.

host_name on page
156

System The current host computer name of the client process.

identity_burn_max on
page 157

The identity_burn_max value.

Function Type Return value

Types of functions

46 Adaptive Server Enterprise

index_col on page 158 System The name of the indexed column in the specified table or view.

index_colorder on page
159

System Returns the column order

inttohex on page 160 Datatype
conversion

The platform-independent, hexadecimal equivalent of the specified
integer.

is_quiesced on page
161

Indicates whether a database is in quiesce database mode. is_quiesced
returns 1 if the database is quiesced and 0 if it is not.

is_sec_service_on on
page 163

Security 1 if the security service is active; 0 if it is not.

isnull on page 164 System Substitutes the value specified in expression2 when expression1
evaluates to NULL.

lct_admin on page 165 System Manages the last-chance threshold.

left on page 168 String Returns a specified number of characters on the left end of a character
string.

len on page 170 String Returns the number of characters, not the number of bytes, of a
specified string expression, excluding trailing blanks.

license_enabled on
page 171

System 1” if the feature’s license is enabled; 0 if it is not.

list_appcontext on
page 172

Security Lists all the attributes of all the contexts in the current session.

lockscheme on page
173

Mathematical Returns the locking scheme of the specified object as a string.

log on page 174 Mathematical The natural logarithm of the specified number.

log10 on page 175 Mathematical The base 10 logarithm of the specified number.

lower on page 176 String The lowercase equivalent of the specified expression.

ltrim on page 177 String The specified expression, trimmed of leading blanks

max on page 178 Aggregate The highest value in a column.

min on page 180 Aggregate The lowest value in a column.

month on page 181 Date An integer that represents the month in the datepart of a specified date

mut_excl_roles on
page 182

Security The mutual exclusivity between two roles.

newid on page 183 System Generates human-readable, globally unique IDs (GUIDs) in two
different formats, based on arguments you provide.

next_identity on page
185

System Retrieves the next identity value that is available for the next insert.

nullif on page 186 Allows SQL expressions to be written for conditional values. nullif
expressions can be used anywhere a value expression can be used;
alternative for a case expression.

object_id on page 188 System The object ID of the specified object.

Function Type Return value

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 47

object_name on page
189

System The name of the object with the specified object ID.

pagesize on page 190 Mathematical Returns the page size, in bytes, for the specified object.

partition_id on page
192

Returns the partition ID of the specified data or index partition name.

partition_name on page
193

The explicit name of a new partition, partition_name returns the
partition name of the specified data or index partition id.

patindex on page 194 String, Text,
Unitext, and
Image

The starting position of the first occurrence of a specified pattern.

pi on page 197 Mathematical The constant value 3.1415926535897936.

power on page 198 Mathematical The value that results from raising the specified number to a given
power.

proc_role on page 199 Security 1 if the user has the correct role to execute the procedure; 0 if the user
does not have this role.

radians on page 201 Mathematical The size, in radians, of an angle with a specified number of degrees.

rand on page 202 Mathematical A random value between 0 and 1, generated using the specified seed
value.

replicate on page 203 String A string consisting of the specified expression repeated a given
number of times.

reserved_pages on
page 204

System The number of pages allocated to the specified table or index.

reverse on page 206 String The specified string, with characters listed in reverse order.

right on page 207 String The part of the character expression, starting the specified number of
characters from the right.

rm_appcontext on page
209

Security Removes a specific application context, or all application contexts.

role_contain on page
210

Security 1 if role2 contains role1.

role_id on page 211 Security The system role ID of the role with the name you specify.

role_name on page 212 Security The name of a role with the system role ID you specify.

round on page 213 Mathematical The value of the specified number, rounded to a given number of
decimal places.

row_count on page 215 System An estimate of the number of rows in the specified table.

rtrim on page 216 String The specified expression, trimmed of trailing blanks.

set_appcontext on
page 217

Security Sets an application context name, attribute name, and attribute value
for a user session, defined by the attributes of a specified application.

show_role on page 219 Security The login’s currently active roles.

Function Type Return value

Types of functions

48 Adaptive Server Enterprise

show_sec_services on
page 220

Security A list of the user’s currently active security services.

sign on page 221 Mathematical The sign (+1 for positive, 0, or -1 for negative) of the specified value.

sin on page 222 Mathematical The sine of the specified angle (in radians).

sortkey on page 223 System Values that can be used to order results based on collation behavior,
which allows you to work with character collation behaviors beyond
the default set of Latin-character-based dictionary sort orders and case
or accent sensitivity.

soundex on page 228 String A 4-character code representing the way an expression sounds.

space on page 229 String A string consisting of the specified number of single-byte spaces.

square on page 230 Mathematical Returns the square of a specified value expressed as a float.

sqrt on page 231 Mathematical The square root of the specified number.

str on page 232 String The character equivalent of the specified number.

str_replace on page
234

String Replaces any instances of the second string expression that occur
within the first string expression with a third expression.

stuff on page 236 String The string formed by deleting a specified number of characters from
one string and replacing them with another string.

substring on page 238 String The string formed by extracting a specified number of characters from
another string.

sum on page 240 Aggregate The total of the values.

suser_id System The server user’s ID number from the syslogins system table.

suser_name on page
243

System The name of the current server user, or the user where the server user
ID is specified.

syb_quit on page 244 System Terminates the connection.

syb_sendmsg on page
245

System Sends a message to a User Datagram Protocol (UDP) port.

tan on page 246 Mathematical The tangent of the specified angle (in radians).

tempdb_id on page 247 System The database ID of the temporary database assigned to the specified
spid

textptr on page 248 Text, Unitext,
and Image

The pointer to the first page of the specified text column.

textvalid on page 249 Text and
Image

1 if the pointer to the specified text column is valid; 0 if it is not.

to_unichar on page 250 String A unichar expression having the value of the integer expression.

tran_dumptable_status
on page 251

System Returns a true/false indication of whether dump transaction is allowed.

tsequal on page 252 System Compares timestamp values to prevent update on a row that has been
modified since it was selected for browsing.

Function Type Return value

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 49

The following sections describe the types of functions in detail. The remainder
of the chapter contains descriptions of the individual functions in alphabetical
order.

Aggregate functions
The aggregate functions generate summary values that appear as new columns
in the query results. The aggregate functions are:

• avg

• count

• count_big

• max

• min

• sum

uhighsurr on page 254 String 1 if the Unicode value at position start is the high half of a surrogate
pair (which should appear first in the pair); otherwise 0.

ulowsurr on page 255 String 1 if the Unicode value at position start is the low half of a surrogate pair
(which should appear second in the pair); otherwise 0.

upper on page 256 String The uppercase equivalent of the specified string.

uscalar on page 257 String The Unicode scalar value for the first Unicode character in an
expression.

used_pages on page
258

System The number of pages used by the specified table and its clustered
index.

user on page 260 System The name of the current server user.

user_id on page 261 System The ID number of the specified user or the current user.

user_name on page
262

System The name within the database of the specified user or the current user.

valid_name on page
263

System 0 if the specified string is not a valid identifier; a number other than 0
if the string is valid.

valid_user on page 264 System 1 if the specified ID is a valid user or alias in at least one database on
this Adaptive Server.

year on page 265 Date An integer that represents the year in the datepart of a specified date.

Function Type Return value

Aggregate functions

50 Adaptive Server Enterprise

Aggregate functions can be used in the select list or the having clause of a select
statement or subquery. They cannot be used in a where clause.

Each aggregate in a query requires its own worktable. Therefore, a query using
aggregates cannot exceed the maximum number of worktables allowed in a
query (12).

When an aggregate function is applied to a char datatype value, it implicitly
converts the value to varchar, stripping all trailing blanks. Likewise, a unichar
datatype value is implicitly converted to univarchar.

The max, min, and count aggregate functions have semantics that include the
unichar datatype.

Aggregates used with group by
Aggregates are often used with group by. With group by, the table is divided
into groups. Aggregates produce a single value for each group. Without group
by, an aggregate function in the select list produces a single value as a result,
whether it is operating on all the rows in a table or on a subset of rows defined
by a where clause.

Aggregate functions and NULL values
Aggregate functions calculate the summary values of the non-null values in a
particular column. If the ansinull option is set off (the default), there is no
warning when an aggregate function encounters a null. If ansinull is set on, a
query returns the following SQLSTATE warning when an aggregate function
encounters a null:

Warning- null value eliminated in set function

Vector and scalar aggregates
Aggregate functions can be applied to all the rows in a table, in which case they
produce a single value, a scalar aggregate. They can also be applied to all the
rows that have the same value in a specified column or expression (using the
group by and, optionally, the having clause), in which case, they produce a value
for each group, a vector aggregate. The results of the aggregate functions are
shown as new columns.

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 51

You can nest a vector aggregate inside a scalar aggregate. For example:

select type, avg(price), avg(avg(price))
from titles
group by type
type
------------ ------------ ------------
UNDECIDED NULL 15.23
business 13.73 15.23
mod_cook 11.49 15.23
popular_comp 21.48 15.23
psychology 13.50 15.23
trad_cook 15.96 15.23

(6 rows affected)

The group by clause applies to the vector aggregate—in this case, avg(price).
The scalar aggregate, avg(avg(price)), is the average of the average prices by
type in the titles table.

In standard SQL, when a select_list includes an aggregate, all the select_list
columns must either have aggregate functions applied to them or be in the
group by list. Transact-SQL has no such restrictions.

Example 1 shows a select statement with the standard restrictions. Example 2
shows the same statement with another item (title_id) added to the select list.
order by is also added to illustrate the difference in displays. These “extra”
columns can also be referenced in a having clause.

Example 1 select type, avg(price), avg(advance)
from titles
group by type

type
------------ ------------ ------------
UNDECIDED NULL NULL
business 13.73 6,281.25
mod_cook 11.49 7,500.00
popular_comp 21.48 7,500.00
psychology 13.50 4,255.00
trad_cook 15.96 6,333.33

(6 rows affected)

Example 2 You can use either a column name or any other expression (except a column
heading or alias) after group by.

Null values in the group by column are placed into a single group.

Aggregate functions

52 Adaptive Server Enterprise

select type, title_id, avg(price), avg(advance)
from titles
group by type
order by type

type title_id
----------- -------- ---------- ---------
UNDECIDED MC3026 NULL NULL
business BU1032 13.73 6,281.25
business BU1111 13.73 6,281.25
business BU2075 13.73 6,281.25
business BU7832 13.73 6,281.25
mod_cook MC2222 11.49 7,500.00
mod_cook MC3021 11.49 7,500.00
popular_comp PC1035 21.48 7,500.00
popular_comp PC8888 21.48 7,500.00
popular_comp PC9999 21.48 7,500.00
psychology PS1372 13.50 4,255.00
psychology PS2091 13.50 4,255.00
psychology PS2106 13.50 4,255.00
psychology PS3333 13.50 4,255.00
psychology PS7777 13.50 4,255.00
trad_cook TC3218 15.96 6,333.33
trad_cook TC4203 15.96 6,333.33
trad_cook TC7777 15.96 6,333.33

Example 3 The compute clause in a select statement uses row aggregates to produce
summary values. The row aggregates make it possible to retrieve detail and
summary rows with one command. Example 3 illustrates this feature:

select type, title_id, price, advance
from titles
where type = "psychology"
order by type
compute sum(price), sum(advance) by type

type title_id price advance
----------- ------- ---------- ---------
psychology PS1372 21.59 7,000.00
psychology PS2091 10.95 2,275.00
psychology PS2106 7.00 6,000.00
psychology PS3333 19.99 2,000.00
psychology PS7777 7.99 4,000.00

sum sum
------- ----------
67.52 21,275.00

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 53

Note the difference in display between Example 3 and the examples without
compute (Example 1 and Example 2).

You cannot use aggregate functions on virtual tables such as sysprocesses and
syslocks.

If you include an aggregate function in the select clause of a cursor, that cursor
cannot be updated.

Aggregate functions as row aggregates
Row aggregate functions generate summary values that appear as additional
rows in the query results.

To use the aggregate functions as row aggregates, use the following syntax:

Start of select statement

compute row_aggregate(column_name)
[, row_aggregate(column_name)]...

[by column_name [, column_name]...]

Where:

• column_name is the name of a column. It must be enclosed in parentheses.
Only exact numeric, approximate numeric, and money columns can be
used with sum and avg.

One compute clause can apply the same function to several columns.
When using more than one function, use more than one compute clause.

• by indicates that row aggregate values are to be calculated for subgroups.
Whenever the value of the by item changes, row aggregate values are
generated. If you use by, you must use order by.

Listing more than one item after by breaks a group into subgroups and
applies a function at each level of grouping.

The row aggregates make it possible to retrieve detail and summary rows with
one command. The aggregate functions, on the other hand, ordinarily produce
a single value for all the selected rows in the table or for each group, and these
summary values are shown as new columns.

The following examples illustrate the differences:

select type, sum(price), sum(advance)
from titles
where type like "%cook"
group by type

Aggregate functions

54 Adaptive Server Enterprise

type
---------- ---------- ----------------
mod_cook 22.98 15,000.00
trad_cook 47.89 19,000.00

(2 rows affected)

select type, price, advance
from titles
where type like "%cook"
order by type
compute sum(price), sum(advance) by type

type price advance
---------- ---------- ----------------
mod_cook 2.99 15,000.00
mod_cook 19.99 0.00

sum sum
---------- ----------------

22.98 15,000.00
type price advance
---------- ---------- ----------------
trad_cook 11.95 4,000.00
trad_cook 14.99 8,000.00
trad_cook 20.95 7,000.00

sum sum
---------- ----------------

47.89 19,000.00
(7 rows affected)
type price advance
---------- ---------- ----------------
mod_cook 2.99 15,000.00
mod_cook 19.99 0.00

Compute Result:
---------------------- -----------------

22.98 15,000.00
type price advance
---------- ---------- ----------------
trad_cook 11.95 4,000.00
trad_cook 14.99 8,000.00
trad_cook 20.95 7,000.00

Compute Result:
---------------------- -----------------

47.89 19,000.00
(7 rows affected)

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 55

The columns in the compute clause must appear in the select list.

The order of columns in the select list overrides the order of the aggregates in
the compute clause. For example:

create table t1 (a int, b int, c int null)
insert t1 values(1,5,8)
insert t1 values(2,6,9)

(1 row affected)

compute sum(c), max(b), min(a)
select a, b, c from t1

a b c
----------- ----------- -----------

1 5 8
2 6 9

Compute Result:
----------- ----------- -----------

1 6 17

If the ansinull option is set off (the default), there is no warning when a row
aggregate encounters a null. If ansinull is set on, a query returns the following
SQLSTATE warning when a row aggregate encounters a null:

Warning - null value eliminated in set function

You cannot use select into in the same statement as a compute clause because
there is no way to store the compute clause output in the resulting table.

Datatype conversion functions
Datatype conversion functions change expressions from one datatype to
another and specify new display formats for date and time information. The
datatype conversion functions are:

• cast

• convert

• inttohex

• hextoint

• hextobigint

Datatype conversion functions

56 Adaptive Server Enterprise

• biginttohex

• str

You can use the datatype conversion functions in the select list, in the where
clause, and anywhere else an expression is allowed.

Adaptive Server performs certain datatype conversions automatically. These
are called implicit conversions. For example, if you compare a char
expression and a datetime expression, or a smallint expression and an int
expression, or char expressions of different lengths, Adaptive Server
automatically converts one datatype to another.

You must request other datatype conversions explicitly, using one of the
built-in datatype conversion functions. For example, before concatenating
numeric expressions, you must convert them to character expressions.

Adaptive Server does not allow you to convert certain datatypes to certain
other datatypes, either implicitly or explicitly. For example, you cannot convert
the following:

• smallint data to datetime

• datetime data to smallint

• binary or varbinary data to smalldatetime or datetime data

 Unsupported conversions result in error messages.

Table 2-3 indicates whether individual datatype conversions are performed
implicitly, explicitly, or are not supported.

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 57

Table 2-3: Explicit, implicit, and unsupported datatype conversions

From b
in

ar
y

va
rb

in
ar

y

b
it

[n
]c

h
ar

[n
]v

ar
ch

ar

d
at

et
im

e

sm
al

ld
at

et
im

e

ti
n

yi
n

t

sm
al

lin
t

u
n

si
g

n
ed

 s
m

al
lin

t

in
t

u
n

si
g

n
ed

 in
t

b
ig

in
t

u
n

si
g

n
ed

 b
ig

in
t

d
ec

im
al

n
u

m
er

ic

fl
o

at

re
al

m
o

n
ey

sm
al

lm
o

n
ey

te
xt

u
n

it
ex

t

im
ag

e

u
n

ic
h

ar
u

n
iv

ar
ch

ar

d
at

e

ti
m

e

binary – I I I I U U I I I I I I I I I I I I I U I I I I I I

varbinary I – I I I U U I I I I I I I I I I I I I U I I I I I I

bit I I – I I U U I I I I I I I I I I I I I U U U E E U U

[n]char I I E – I I I E E E E E E E E E E E E E I I I I I I I

[n]varchar I I E I – I I E E E E E E E E E E E E E I I I I I I I

datetime I I U I I – I U U U U U U U U U U U U U U U U I I I I

smalldatetime I I U I I I – U U U U U U U U U U U U U U U U I I I I

tinyint I I I E E U U – I I I I I I I I I I I I U U U E E U U

smallint I I I E E U U I – I I I I I I I I I I I U U U U E U U

unsigned
smallint

I I I E E U U I I – I I I I I I I I I I U U U E E U U

int I I I E E U U I I I – I I I I I I I I I U U U E E U U

unsigned int I I I E E U U I I I I – I I I I I I I I U U U E E U U

bigint I I I E E U U I I I I I – I I I I I I I U U U E E U U

unsigned
bigint

I I I E E U U I I I I I I – I I I I I I U U U E E U U

decimal I I I E E U U I I I I I I I – I I I I I U U U E E U U

numeric I I I E E U U I I I I I I I I – I I I I U U U E E U U

float I I I E E U U I I I I I I I I I – I I I U U U E E U U

real I I I E E U U I I I I I I I I I I – I I U U U E E U U

money I I I I I U U I I I I I I I I I I I – I U U U E E U U

smallmoney I I I I I U U I I I I I I I I I I I I – U U U E E U U

text U U U E E U U U U U U U U U U U U U U U – I U E E U U

unitext E E E E E U U U U U U U U U U U U U U U I – I U U U U

image E E U U U U U U U U U U U U U U U U U U U I – E E U U

unichar I I E I I I I E E E E E E E E E E E E E I I I – I I I

univarchar I I E I I I I E E E E E E E E E E E E E I I I I – I I

date I I U I I I U U U U U U U U U U U U U U U U U I I – I

time I I U I I I U U U U U U U U U U U U U U U U U I I I –

Datatype conversion functions

58 Adaptive Server Enterprise

Datatype conversion
key

• E – explicit datatype conversion is required.

• I – conversion can be done either implicitly, or with an explicit datatype
conversion function.

• I/E – Explicit datatype conversion function required when there is loss of
precision or scale, and arithabortnumeric_truncation is on; implicit
conversion allowed otherwise.

• U – unsupported conversion.

• – conversion of a datatype to itself. These conversions are allowed, but
are meaningless.

Converting character data to a noncharacter type
You can convert character data to a noncharacter type—such as a money,
date/time, exact numeric, or approximate numeric type—if it consists entirely
of characters that are valid for the new type. Leading blanks are ignored.
However, if a char expression that consists of a blank or blanks is converted to
a datetime expression, Adaptive Server converts the blanks into the default
datetime value of “Jan 1, 1900.”

Syntax errors are generated when the data includes unacceptable characters.
Following are some examples of characters that cause syntax errors:

• Commas or decimal points in integer data

• Commas in monetary data

• Letters in exact or approximate numeric data or bit stream data

• Misspelled month names in date and time data

Implicit conversions between unichar/univarchar and datetime/smalldatetime
are supported.

Converting from one character type to another
When converting from a multibyte character set to a single-byte character set,
characters with no single-byte equivalent are converted to question marks.

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 59

text and unitext columns can be explicitly converted to char, nchar, varchar,
unichar, univarchar, or nvarchar. You are limited to the maximum length of the
character datatypes, which is determined by the maximum column size for your
server’s logical page size. If you do not specify the length, the converted value
has a default length of 30 bytes.

Converting numbers to a character type
Exact and approximate numeric data can be converted to a character type. If
the new type is too short to accommodate the entire string, an insufficient space
error is generated. For example, the following conversion tries to store a
5-character string in a 1-character type:

select convert(char(1), 12.34)
Insufficient result space for explicit conversion
of NUMERIC value ’12.34’ to a CHAR field.

When converting float data to a character type, the new type should be at least
25 characters long.

Note The str function may be preferable to convert or cast when making
conversions, because it provides more control over conversions and avoids
errors.

Rounding during conversion to and from money types
The money and smallmoney types store 4 digits to the right of the decimal point,
but round up to the nearest hundredth (.01) for display purposes. When data is
converted to a money type, it is rounded up to four places.

Data converted from a money type follows the same rounding behavior if
possible. If the new type is an exact numeric with less than three decimal
places, the data is rounded to the scale of the new type. For example, when
$4.50 is converted to an integer, it yields 5:

select convert(int, $4.50)

5

Datatype conversion functions

60 Adaptive Server Enterprise

Data converted to money or smallmoney is assumed to be in full currency units
such as dollars rather than in fractional units such as cents. For example, the
integer value of 5 is converted to the money equivalent of 5 dollars, not 5 cents,
in the us_english language.

Converting date and time information
Data that is recognizable as a date can be converted to datetime, smalldatetime,
date, or time. Incorrect month names lead to syntax errors. Dates that fall
outside the acceptable range for the datatype lead to arithmetic overflow errors.

When datetime values are converted to smalldatetime, they are rounded to the
nearest minute.

When converting date data to a character type, use style numbers 1 through 7
(101 through 107) or 10 through 12 (110 through 112) in Table 2-6 on page 104
to specify the display format. The default value is 100 (mon dd yyyy hh:miAM
(or PM)). If date data is converted to a style that contains a time portion, that
time portion reflects the default value of zero.

When converting time data to a character type, use style number 8 or 9 (108 or
109) to specify the display format. The default is 100 (mon dd yyyy hh:miAM
(or PM)). If time data is converted to a style that contains a date portion, the
default date of Jan 1, 1900 is displayed.

Converting between numeric types
You can convert data from one numeric type to another. Errors can occur if the
new type is an exact numeric with precision or scale that is not sufficient to
hold the data.

For example, if you provide a float or numeric value as an argument to a
built-in function that expects an integer, the value of the float or numeric is
truncated. However, Adaptive Server does not implicitly convert numerics that
have a fractional part but returns a scale error message. For example, Adaptive
Server returns error 241 for numerics that have a fractional part and error 257
if other datatypes are passed.

Use the arithabort and arithignore options to determine how Adaptive Server
handles errors resulting from numeric conversions.

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 61

Arithmetic overflow and divide-by-zero errors
Divide-by-zero errors occur when Adaptive Server tries to divide a numeric
value by zero. Arithmetic overflow errors occur when the new type has too few
decimal places to accommodate the results. This happens during:

• Explicit or implicit conversions to exact types with a lower precision or
scale

• Explicit or implicit conversions of data that falls outside the acceptable
range for a money or date/time type

• Conversions of hexadecimal strings requiring more than 4 bytes of storage
using hextoint

Both arithmetic overflow and divide-by-zero errors are considered serious,
whether they occur during an implicit or explicit conversion. Use the arithabort
arith_overflow option to determine how Adaptive Server handles these errors.
The default setting, arithabort arith_overflow on, rolls back the entire transaction
in which the error occurs. If the error occurs in a batch that does not contain a
transaction, arithabort arith_overflow on does not roll back earlier commands in
the batch, and Adaptive Server does not execute statements that follow the
error-generating statement in the batch. If you set arithabort arith_overflow off,
Adaptive Server aborts the statement that causes the error, but continues to
process other statements in the transaction or batch.You can use the @@error
global variable to check statement results.

Use the arithignore arith_overflow option to determine whether Adaptive Server
displays a message after these errors. The default setting, off, displays a
warning message when a divide-by-zero error or a loss of precision occurs.
Setting arithignore arith_overflow on suppresses warning messages after these
errors. You can omit optional arith_overflow keyword without any effect.

Scale errors

When an explicit conversion results in a loss of scale, the results are truncated
without warning. For example, when you explicitly convert a float, numeric, or
decimal type to an integer, Adaptive Server assumes you want the result to be
an integer and truncates all numbers to the right of the decimal point.

Datatype conversion functions

62 Adaptive Server Enterprise

During implicit conversions to numeric or decimal types, loss of scale generates
a scale error. Use the arithabort numeric_truncation option to determine how
serious such an error is considered. The default setting, arithabort
numeric_truncation on, aborts the statement that causes the error, but continues
to process other statements in the transaction or batch. If you set arithabort
numeric_truncation off, Adaptive Server truncates the query results and
continues processing.

Note For entry level ANSI SQL compliance, set:

• arithabort arith_overflow off

• arithabort numeric_truncation on

• arithignore off

Domain errors

The convert function generates a domain error when the function’s argument
falls outside the range over which the function is defined. This happens rarely.

Conversions between binary and integer types
The binary and varbinary types store hexadecimal-like data consisting of a “0x”
prefix followed by a string of digits and letters.

These strings are interpreted differently by different platforms. For example,
the string “0x0000100” represents 65536 on machines that consider byte 0
most significant (little-endian) and 256 on machines that consider byte 0 least
significant (big-endian).

Binary types can be converted to integer types either explicitly, using the
convert function, or implicitly. If the data is too short for the new type, it is
stripped of its “0x” prefix and zero-padded. If it is too long, it is truncated.

Both convert and the implicit datatype conversions evaluate binary data
differently on different platforms. Because of this, results may vary from one
platform to another. Use the hextoint function for platform-independent
conversion of hexadecimal strings to integers, and the inttohex function for
platform-independent conversion of integers to hexadecimal values. Use the
hextobigint function for platform-independent conversion of hexadecimal
strings to 64-bit integers, and the biginttohex function for platform-independent
conversion of 64-bit integers to hexadecimal values.

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 63

Converting between binary and numeric or decimal types
In binary and varbinary data strings, the first two digits after “0x” represent the
binary type: “00” represents a positive number and “01” represents a negative
number. When you convert a binary or varbinary type to numeric or decimal, be
sure to specify the “00” or “01” values after the “0x” digit; otherwise, the
conversion will fail.

For example, here is how to convert the following binary data to numeric:

select convert(numeric
(38, 18),0x000000000000000006b14bd1e6eea0000000000000000000000000000000)

123.456000

This example converts the same numeric data back to binary:

select convert(binary,convert(numeric(38, 18), 123.456))

--
0x000000000000000006b14bd1e6eea0000000000000000000000000000000

Converting image columns to binary types
You can use the convert function to convert an image column to binary or
varbinary. You are limited to the maximum length of the binary datatypes,
which is determined by the maximum column size for your server’s logical
page size. If you do not specify the length, the converted value has a default
length of 30 characters.

Converting other types to bit
Exact and approximate numeric types can be converted to the bit type
implicitly. Character types require an explicit convert function.

The expression being converted must consist only of digits, a decimal point, a
currency symbol, and a plus or minus sign. The presence of other characters
generates syntax errors.

The bit equivalent of 0 is 0. The bit equivalent of any other number is 1.

Date functions

64 Adaptive Server Enterprise

Converting NULL value
You can use the convert function to change NULL to NOT NULL and NOT
NULL to NULL.

Date functions
The date functions manipulate values of the datatypes datetime, smalldatetime,
date or time.

You can use date functions in the select list or where clause of a query.

Use the datetime datatype only for dates after January 1, 1753. datetime values
must be enclosed in single or double quotes. Use date for dates from January,
1 0001 to January 1, 9999. date values must be enclosed in single or double
quotes. Use char, nchar, varchar, or nvarchar for earlier dates. Adaptive Server
recognizes a wide variety of date formats. See “Datatype conversion
functions” on page 55 and “Date and time datatypes” on page 20 for more
information.

Adaptive Server automatically converts between character and datetime values
when necessary (for example, when you compare a character value to a
datetime value).

The date datatype can cover dates from January 1, 0001 to January 1, 9999.

Date parts
The date parts, the abbreviations recognized by Adaptive Server, and the
acceptable values are:

Date part Abbreviation Values

year yy 1753 – 9999 (2079 for smalldatetime)

quarter qq 1 – 4

month mm 1 – 12

week wk 1 – 54

day dd 1 – 31

dayofyear dy 1 – 366

weekday dw 1 – 7 (Sun. – Sat.)

hour hh 0 – 23

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 65

When you enter a year as two digits (yy):

• Numbers less than 50 are interpreted as 20yy. For example, 01 is 2001, 32
is 2032, and 49 is 2049.

• Numbers equal to or greater than 50 are interpreted as 19yy. For example,
50 is 1950, 74 is 1974, and 99 is 1999.

Milliseconds can be preceded either with a colon or a period. If preceded by a
colon, the number means thousandths of a second. If preceded by a period, a
single digit means tenths of a second, two digits mean hundredths of a second,
and three digits mean thousandths of a second. For example, “12:30:20:1”
means twenty and one-thousandth of a second past 12:30; “12:30:20.1” means
twenty and one-tenth of a second past 12:30. Adaptive Server may round or
truncate millisecond values when inserting datetime or time data, as these
datatypes have a granularity of 1/300th of a second rather than 1/1000th of a
second. You can use the time datatype for time information.

Mathematical functions
Mathematical functions return values commonly needed for operations on
mathematical data. Mathematical function names are not keywords.

Each function also accepts arguments that can be implicitly converted to the
specified type. For example, functions that accept approximate numeric types
also accept integer types. Adaptive Server automatically converts the argument
to the desired type.

The mathematical functions are:

minute mi 0 – 59

second ss 0 – 59

millisecond ms 0 – 999

Date part Abbreviation Values

• abs

• acos

• asin

• atan

• atn2

• ceiling

• cos

• cot

• degrees

• exp

• floor

• lockscheme

• log

• log10

• pagesize

• pi

• power

• radians

• rand

• round

• sign

• sin

• sqrt

• tan

Security functions

66 Adaptive Server Enterprise

Error traps are provided to handle domain or range errors of these functions.
Users can set the arithabort and arithignore options to determine how domain
errors are handled:

• arithabort arith_overflow specifies behavior following a divide-by-zero
error or a loss of precision. The default setting, arithabort arith_overflow on,
rolls back the entire transaction or aborts the batch in which the error
occurs. If you set arithabort arith_overflow off, Adaptive Server aborts the
statement that causes the error, but continues to process other statements
in the transaction or batch.

• arithabort numeric_truncation specifies behavior following a loss of scale
by an exact numeric type during an implicit datatype conversion. (When
an explicit conversion results in a loss of scale, the results are truncated
without warning.) The default setting, arithabort numeric_truncation on,
aborts the statement that causes the error, but continues to process other
statements in the transaction or batch. If you set arithabort
numeric_truncation off, Adaptive Server truncates the query results and
continues processing.

• By default, the arithignore arith_overflow option is turned off, causing
Adaptive Server to display a warning message after any query that results
in numeric overflow. Set the arithignore option on to ignore overflow
errors.

Security functions
Security functions return security-related information.

The security functions are:

• is_sec_service_on

• show_sec_services

• get_appcontext

• list_appcontext

• set_appcontext

• rm_appcontext

• show_role

• proc_role

• role_contain

• role_id

• role_name

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 67

String functions
String function operate on binary data, character strings, and expressions. The
string functions are:

You can nest string functions and use them in a select list, in a where clause, or
anywhere an expression is allowed. When you use constants with a string
function, enclose them in single or double quotes. String function names are
not keywords.

Each string function also accepts arguments that can be implicitly converted to
the specified type. For example, functions that accept approximate numeric
expressions also accept integer expressions. Adaptive Server automatically
converts the argument to the desired type.

When a string function accepts two character expressions but only one
expression is unichar, the other expression is “promoted” and internally
converted to unichar. This follows existing rules for mixed-mode expressions.
However, this conversion may cause truncation, since unichar data sometimes
takes twice the space.

Limits on string functions
Results of string functions are limited to 16K. This limit is independent of the
server’s page size. In Transact-SQL string functions and string variables,
literals can be as large as 16K even on a 2K page size.

If set string_rtruncation is on, a user receives an error if an insert or update
truncates a character string. However, Adaptive Server does not report an error
if a displayed string is truncated. For example:

select replicate("a", 16383) + replicate("B", 4000)

This shows that the total length would be 20383, but the result string is
restricted to 16K.

• ascii

• char

• charindex

• char_length

• difference

• lower

• ltrim

• patindex

• replicate

• reverse

• right

• rtrim

• soundex

• space

• str

• stuff

• substring

• to_unichar

• uhighsurr

• ulowsurr

• upper

• uscalar

System functions

68 Adaptive Server Enterprise

System functions
System functions return special information from the database. The system
functions are:

The system functions can be used in a select list, in a where clause, and
anywhere an expression is allowed.

When the argument to a system function is optional, the current database, host
computer, server user, or database user is assumed.

Text, unitext, and image columns
text, unitext, and image columns cannot be used:

• As parameters to stored procedures

• As values passed to stored procedures

• As local variables

• In order by, compute, and group by clauses

• In an index

• In a where clause clause, except with the keyword like

• In joins

In triggers, both the inserted and deleted text values reference the new value;
you cannot reference the old value.

• col_length

• col_name

• curunreservedpgs

• data_pages

• datalength

• db_id

• db_name

• host_id

• host_name

• index_col

• is_quiesced

• isnull

• object_id

• object_name

• reserved_pages

• row_count

• show_role

• suser_id

• suser_name

• tempdb_id

• tran_dumptable_
status

• tsequal

• used_pages

• user

• user_id

• user_name

• valid_name

• valid_user

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 69

Text and image functions
Text and image functions operate on text, image, and unitext data. The text and
image functions are:

• textptr

• textvalid

Text and image built-in function names are not keywords. Use the set textsize
option to limit the amount of text, image, and unitext data that is retrieved by a
select statement.

You can use the patindex text function on text, image, and unitext columns and
can consider it on a text and image function.

You can use the datalength function to display the length of data in text, image,
and unitext columns.

abs

70 Adaptive Server Enterprise

abs
Description Returns the absolute value of an expression.

Syntax abs(numeric_expression)

Parameters numeric_expression
is a column, variable, or expression with datatype that is an exact numeric,
approximate numeric, money, or any type that can be implicitly converted
to one of these types.

Examples Returns the absolute value of -1:

select abs(-1)

1

Usage abs, a mathematical function, returns the absolute value of a given expression.
Results are of the same type and have the same precision and scale as the
numeric expression.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute abs.

See also “Mathematical functions” on page 65 for general information about
mathematical functions.

Functions ceiling, floor, round, sign

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 71

acos
Description Returns the angle (in radians) with a specified cosine.

Syntax acos(cosine)

Parameters cosine
is the cosine of the angle, expressed as a column name, variable, or constant
of type float, real, double precision, or any datatype that can be implicitly
converted to one of these types.

Examples Returns the angle where the cosine is 0.52:

select acos(0.52)

1.023945

Usage acos, a mathematical function, returns the angle (in radians) where the cosine
is the specified value.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute acos.

See also “Mathematical functions” on page 65 for general information about
mathematical functions.

Functions cos, degrees, radians

ascii

72 Adaptive Server Enterprise

ascii
Description Returns the ASCII code for the first character in an expression.

Syntax ascii(char_expr | uchar_expr)

Parameters char_expr
is a character-type column name, variable, or constant expression of char,
varchar, nchar, or nvarchar type.

uchar_expr
is a character-type column name, variable, or constant expression of unichar
or univarchar type.

Examples select au_lname, ascii(au_lname) from authors
where ascii(au_lname) < 70

au_lname
------------------------------ -----------
Bennet 66
Blotchet-Halls 66
Carson 67
DeFrance 68
Dull 68

Returns the author’s last names and the ACSII codes for the first letters in their
last names, if the ASCII code is less than 70.

Usage • ascii, a string function, returns the ASCII code for the first character in the
expression.

• When a string function accepts two character expressions but only one
expression is unichar, the other expression is “promoted” and internally
converted to unichar. This follows existing rules for mixed-mode
expressions. However, this conversion may cause truncation, since unichar
data sometimes takes twice the space.

• If char_expr or uchar_expr is NULL, returns NULL.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute ascii.

See also For general information about string functions, see “String functions” on page
67.

Functions char, to_unichar

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 73

asin
Description Returns the angle (in radians) with a specified sine.

Syntax asin(sine)

Parameters sine
is the sine of the angle, expressed as a column name, variable, or constant of
type float, real, double precision, or any datatype that can be implicitly
converted to one of these types.

Examples select asin(0.52)

0.546851

Usage • asin, a mathematical function, returns the angle (in radians) with a sine of
the specified value.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute asin.

See also “Mathematical functions” on page 65 for general information about
mathematical functions.

Functions degrees, radians, sin

atan

74 Adaptive Server Enterprise

atan
Description Returns the angle (in radians) with a specified tangent.

Syntax atan(tangent)

Parameters tangent
is the tangent of the angle, expressed as a column name, variable, or constant
of type float, real, double precision, or any datatype that can be implicitly
converted to one of these types.

Examples select atan(0.50)

0.463648

Usage • atan, a mathematical function, returns the angle (in radians) of a tangent
with the specified value.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute atan.

See also “Mathematical functions” on page 65 for general information about
mathematical functions.

Functions atn2, degrees, radians, tan

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 75

atn2
Description Returns the angle (in radians) with specified sine and cosine.

Syntax atn2(sine, cosine)

Parameters sine
is the sine of the angle, expressed as a column name, variable, or constant of
type float, real, double precision, or any datatype that can be implicitly
converted to one of these types.

cosine
is the cosine of the angle, expressed as a column name, variable, or constant
of type float, real, double precision, or any datatype that can be implicitly
converted to one of these types.

Examples select atn2(.50, .48)

0.805803

Usage • atn2, a mathematical function, returns the angle (in radians) whose sine
and cosine are specified.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute atn2.

See also “Mathematical functions” on page 65 for general information about
mathematical functions.

Functions atan, degrees, radians, tan

avg

76 Adaptive Server Enterprise

avg
Description Returns the numeric average of all (distinct) values.

Syntax avg([all | distinct] expression)

Parameters all
applies avg to all values. all is the default.

distinct
eliminates duplicate values before avg is applied. distinct is optional.

expression
is a column name, constant, function, any combination of column names,
constants, and functions connected by arithmetic or bitwise operators, or a
subquery. With aggregates, an expression is usually a column name. For
more information, see “Expressions” on page 275.

Examples Example 1 Calculates the average advance and the sum of total sales for all
business books. Each of these aggregate functions produces a single summary
value for all of the retrieved rows:

select avg(advance), sum(total_sales)
from titles
where type = "business"

------------------------ -----------
6,281.25 30788

Example 2 Used with a group by clause, the aggregate functions produce
single values for each group, rather than for the entire table. This statement
produces summary values for each type of book:

select type, avg(advance), sum(total_sales)
from titles
group by type

type
------------ ------------------------ -----------
UNDECIDED NULL NULL
business 6,281.25 30788
mod_cook 7,500.00 24278
popular_comp 7,500.00 12875
psychology 4,255.00 9939
trad_cook 6,333.33 19566

Example 3 Groups the titles table by publishers and includes only those groups
of publishers who have paid more than $25,000 in total advances and whose
books average more than $15 in price:

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 77

select pub_id, sum(advance), avg(price)
from titles
group by pub_id
having sum(advance) > $25000 and avg(price) > $15

pub_id
------ -------------------- --------------------
0877 41,000.00 15.41
1389 30,000.00 18.98

Usage • avg, an aggregate function, finds the average of the values in a column. avg
can only be used on numeric (integer, floating point, or money) datatypes.
Null values are ignored in calculating averages.

• When you average (signed or unsigned) int, smallint, tinyint data , Adaptive
Server returns the result as an int value. When you average (signed or
unsigned) bigint data, Adaptive Server returns the result as a bigint value.
To avoid overflow errors in DB-Library programs, declare variables used
for resultrs appropriately.

• You cannot use avg() with the binary datatypes.

• Since the average value is only defined on numeric datatypes, using avg()
Unicode expressions generates an error.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute avg.

See also For general information about aggregate functions, see “Aggregate functions”
on page 49.

Functions max, min

audit_event_name

78 Adaptive Server Enterprise

audit_event_name
Description Returns a description of an audit event.

Syntax audit_event_name(event_id)

Parameters event_id
is the number of an audit event.

Examples Example 1 Queries the audit trail for table creation events:

select * from audit_data where audit_event_name(event) = "Create Table"

Example 2 Obtains current audit event values. See the Usage section below
for a complete list of audit values and their descriptions.

create table #tmp(event_id int, description varchar(255))
go
declare @a int
select @a=1
while (@a<120)
begin
 insert #tmp values (@a, audit_event_name(@a))
 select @a=@a + 1
end
select * from #tmp
go

event_id description
--------- -------------------

1 Ad hoc Audit Record
2 Alter Database
...
104 Create Index
105 Drop Index

Usage The following lists the ID and name of each of the 111 audit events:

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 79

Note Adaptive Server does not log events if audit_even_name returns NULL.

Standards ANSI SQL – compliance level: Transact-SQL extension.

Permissions Any user can execute audit_event_name.

See also Commands select, sp_audit

1 Ad Hoc Audit record
2 Alter Database
3 Alter table
4 BCP In
5 NULL
6 Bind Default
7 Bind Message
8 Bind Rule
9 Create Database
10 Create Table
11 Create Procedure
12 Create Trigger
13 Create Rule
14 Create Default
15 Create Message
16 Create View
17 Access To Database
18 Delete Table
19 Delete View
20 Disk Init
21 Disk Refit
22 Disk Reinit
23 Disk Mirror
24 Disk Unmirror
25 Disk Remirror
26 Drop Database
27 Drop Table
28 Drop Procedure
29 Drop Trigger
30 Drop Rule
31 Drop Default
32 Drop Message
33 Drop View
34 Dump Database
35 Dump Transaction
36 Fatal Error
37 Nonfatal Error

38 Execution Of Stored
Procedure
39 Execution Of Trigger
40 Grant Command
41 Insert Table
42 Insert View
43 Load Database
44 Load Transaction
45 Log In
46 Log Out
47 Revoke Command
48 RPC In
49 RPC Out
50 Server Boot
51 Server Shutdown
52 NULL
53 NULL
54 NULL
55 Role Toggling
56 NULL
57 NULL
58 NULL
59 NULL
60 NULL
61 Access To Audit Table
62 Select Table
63 Select View
64 Truncate Table
65 NULL
66 NULL
67 Unbind Default
68 Unbind Rule
69 Unbind Message
70 Update Table
71 Update View
72 NULL
73 Auditing Enabled

74 Auditing Disabled
75 NULL
76 SSO Changed Password
79 NULL
80 Role Check Performed
81 DBCC Command
82 Config
83 Online Database
84 Setuser Command
85 User-defined Function
Command
86 Built-in Function
87 Disk Release
88 Set SSA Command
90 Connect Command
91 Reference
92 Command Text
93 JCS Install Command
94 JCS Remove Command
95 Unlock Admin Account
96 Quiesce Database Command
97 Create SQLJ Function
98 Drop SQLJ Function
99 SSL Administration
100 Disk Resize
101 Mount Database
102 Unmount Database
103 Login Command
104 Create Index
105 Drop Index
106 NULL
107 NULL
108 NULL
109 NULL
110 Deploy UDWS
111 Undeploy UDWS

biginttohex

80 Adaptive Server Enterprise

biginttohex
Description Returns the platform-independent 8 byte hexadecimal equivalent of the

specified integer expression.

Syntax biginttohex (integer_expression)

Parameters integer_expression
is the integer value to be converted to a hexadecimal string.

Examples This example converts the big integer -9223372036854775808 to a
hexadecimal string.

1> select biginttohex(-9223372036854775808)
2> go

8000000000000000

Usage • biginttohex, a datatype conversion function, returns the
platform-independent hexadecimal equivalent of an integer, without a
“0x” prefix.

• Use the biginttohex function for platform-independent conversions of
integers to hexadecimal strings. biginttohex accepts any expression that
evaluates to a bigint. It always returns the same hexadecimal equivalent for
a given expression, regardless of the platform on which it is executed.

See also Functions convert, hextobigint, hextoint, inttohex

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 81

case
Description Supports conditional SQL expressions; can be used anywhere a value

expression can be used.

Syntax case
when search_condition then expression
[when search_condition then expression]...
[else expression]

end

case and values syntax:

case expression
when expression then expression
[when expression then expression]...
[else expression]

end

Parameters case
begins the case expression.

when
precedes the search condition or the expression to be compared.

search_condition
is used to set conditions for the results that are selected. Search conditions
for case expressions are similar to the search conditions in a where clause.
Search conditions are detailed in the Transact-SQL User’s Guide.

then
precedes the expression that specifies a result value of case.

expression
is a column name, a constant, a function, a subquery, or any combination of
column names, constants, and functions connected by arithmetic or bitwise
operators. For more information about expressions, see “Expressions” on
page 275 in.

Examples Example 1 Selects all the authors from the authors table and, for certain
authors, specifies the city in which they live:

select au_lname, postalcode,
case

when postalcode = "94705"
then "Berkeley Author"

when postalcode = "94609"
then "Oakland Author"

when postalcode = "94612"
then "Oakland Author"

case

82 Adaptive Server Enterprise

when postalcode = "97330"
then "Corvallis Author"

end
from authors

Example 2 Returns the first occurrence of a non-NULL value in either the
lowqty or highqty column of the discounts table:

select stor_id, discount,
coalesce (lowqty, highqty)

from discounts

Yuo can also use the following format to produce the same result, since
coalesce is an abbreviated form of a case expression:

select stor_id, discount,
case

when lowqty is not NULL then lowqty
else highqty

end
from discounts

Example 3 Selects the titles and type from the titles table. If the book type is
UNDECIDED, nullif returns a NULL value:

select title,
nullif(type, "UNDECIDED")

from titles

You can also use the following format to produce the same result, since nullif is
an abbreviated form of a case expression:

select title,
case

when type = "UNDECIDED" then NULL
else type

end
from titles

Example 4 Produces an error message, because at least one expression must
be something other than the null keyword:

select price, coalesce (NULL, NULL, NULL)
from titles

All result expressions in a CASE expression must not be NULL.

Example 5 Produces an error message, because at least two expressions must
follow coalesce:

select stor_id, discount, coalesce (highqty)

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 83

from discounts

A single coalesce element is illegal in a COALESCE expression.

Usage • case expression simplifies standard SQL expressions by allowing you to
express a search condition using a when...then construct instead of an if
statement.

• case expressions can be used anywhere an expression can be used in SQL.

• If your query produces a variety of datatypes, the datatype of a case
expression result is determined by datatype hierarchy, as described in
“Datatypes of mixed-mode expressions” on page 7 in. If you specify two
datatypes that Adaptive Server cannot implicitly convert (for example,
char and int), the query fails.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions case permission defaults to all users. No permission is required to use it.

See also Commands coalesce, nullif, if...else, select, where clause

cast

84 Adaptive Server Enterprise

cast
Description Returns the specified value, converted to another datatype. cast can change the

nullability of the source expression, and uses the default format for date and
time datatypes.

Syntax cast (expression as datatype [(length | precision[, scale])])

Parameters expression
is the value to be converted from one datatype or date format to another. It
includes columns, constants, functions, any combination of constants, and
functions that are connected by arithmetic or bitwise operators orsubqueries.

When Java is enabled in the database, expression can be a value to be
converted to a Java-SQL class.

When unichar is used as the destination datatype, the default length of 30
Unicode values is used if no length is specified.

length
is an optional parameter used with char, nchar, unichar, univarchar, varchar,
nvarchar, binary and varbinary datatypes. If you do not supply a length,
Adaptive Server truncates the data to 30 characters for character types and
30 bytes for binary types. The maximum allowable length for character and
binary expression is 64K.

precision
is the number of significant digits in a numeric or decimal datatype. For float
datatypes, precision is the number of significant binary digits in the
mantissa. If you do not supply a precision, Adaptive Server uses the default
precision of 18 for numeric and decimal datatypes.

scale
is the number of digits to the right of the decimal point in a numeric, or
decimal datatype. If you do not supply a scale, Adaptive Server uses the
default scale of 0.

Examples Example 1 Converts the date into a more readable datetime format:

select cast("01/03/63" as datetime)
go

Jan 3 1963 12:00AM

(1 row affected)

Example 2 Converts the total_sales column in the title database to a
12-character column:

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 85

select title, cast(total_sales as char(12))

Usage • For more information about datatype conversion, see “Datatype
conversion functions” on page 55.

• cast generates a domain error when the argument falls outside the range
over which the function is defined. This should happen rarely.

• Use null or not null to specify the nullability of a target column. You can
use null or not null with select into to create a new table and change the
datatype and nullability of existing columns in the source table.

• You can use cast to convert an image column to binary or varbinary. You
are limited to the maximum length of the binary datatypes that is
determined by the maximum column size for your server’s logical page
size. If you do not specify the length, the converted value has a default
length of 30 characters.

• You can use unichar expressions as a destination datatype, or they can be
converted to another datatype. unichar expressions can be converted either
explicitly between any other datatype supported by the server, or
implicitly.

• If you do not specify length when unichar is used as a destination type, the
default length of 30 Unicode values is used. If the length of the destination
type is not large enough to accommodate the given expression, an error
message appears.

Implicit conversion

Implicit conversion between types when the primary fields do not match may
cause data truncation, the insertion of a default value, or an error message to be
raised. For example, when a datetime value is converted to a date value, the
time portion is truncated, leaving only the date portion. If a time value is
converted to a datetime value, a default date portion of Jan 1, 1900 is added to
the new datetime value. If a date value is converted to a datetime value, a
default time portion of 00:00:00:000 is added to the datetime value.

DATE -> VARCHAR, CHAR, BINARY, VARBINARY, DATETIME, SMALLDATETIME
TIME -> VARCHAR, CHAR, BINARY, VARBINARY, DATETIME, SMALLDATETIME
VARCHAR, CHAR, BINARY, VARBINARY, DATETIME, SMALLDATETIME -> DATE
VARCHAR, CHAR, BINARY, VARBINARY, DATETIME, SMALLDATETIME -> TIME

Explicit conversion

If you attempt to explicitly convert a date to a datetime, and the value is outside
the datetime range such as “Jan 1, 1000” the conversion is not allowed and an
informative error message is raised.

DATE -> UNICHAR, UNIVARCHAR

cast

86 Adaptive Server Enterprise

TIME -> UNICHAR, UNIVARCHAR
UNICHAR, UNIVARCHAR -> DATE
UNICHAR, UNIVARCHAR -> TIME

Conversions involving Java classes

• When Java is enabled in the database, you can use cast to change datatypes
in these ways:

• Convert Java object types to SQL datatypes.

• Convert SQL datatypes to Java types.

• Convert any Java-SQL class installed in Adaptive Server to any other
Java-SQL class installed in Adaptive Server if the compile-time
datatype of the expression (the source class) is a subclass or
superclass of the target class.

The result of the conversion is associated with the current database.

Standards ANSI SQL – Compliance level: ANSI compliant.

Permissions Any user can execute cast.

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 87

ceiling
Description Returns the smallest integer greater than or equal to the specified value.

Syntax ceiling(value)

Parameters value
is a column, variable, or expression with a datatype is exact numeric,
approximate numeric, money, or any type that can be implicitly converted
to one of these types.

Examples Example 1

select ceiling(123.45)
124

Example 2

select ceiling(-123.45)
-123

Example 3

select ceiling(1.2345E2)
24.000000

Example 4

select ceiling(-1.2345E2)
-123.000000

Example 5

select ceiling($123.45)
124.00

Example 6

select discount, ceiling(discount) from salesdetail
where title_id = "PS3333"
discount
-------------------- --------------------

45.000000 45.000000
46.700000 47.000000
46.700000 47.000000
50.000000 50.000000

Usage • ceiling, a mathematical function, returns the smallest integer that is greater
than or equal to the specified value. The return value has the same datatype
as the value supplied.

ceiling

88 Adaptive Server Enterprise

For numeric and decimal values, results have the same precision as the
value supplied and a scale of zero.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute ceiling.

See also For general information about mathematical functions, see “Mathematical
functions” on page 65.

Command set

Functions abs, floor, round, sign

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 89

char
Description Returns the character equivalent of an integer.

Syntax char(integer_expr)

Parameters integer_expr
is any integer (tinyint, smallint, or int) column name, variable, or constant
expression between 0 and 255.

Examples Example 1

select char(42)

-
*

Example 2

select xxx = char(65)

xxx

A

Usage • char, a string function, converts a single-byte integer value to a character
value (char is usually used as the inverse of ascii).

• char returns a char datatype. If the resulting value is the first byte of a
multibyte character, the character may be undefined.

• If char_expr is NULL, returns NULL.

Reformatting output with char

• You can use concatenation and char values to add tabs or carriage returns
to reformat output. char(10) converts to a return; char(9) converts to a tab.
For example:

/* just a space */
select title_id + " " + title from titles where title_id = "T67061"
/* a return */
select title_id + char(10) + title from titles where title_id = "T67061"
/* a tab */
select title_id + char(9) + title from titles where title_id = "T67061"

T67061 Programming with Curses

T67061

Programming with Curses

char

90 Adaptive Server Enterprise

T67061 Programming with Curses

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute char.

See also For general information about string functions, see “String functions” on page
67.

Functions ascii, str

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 91

char_length
Description Returns the number of characters in an expression.

Syntax char_length(char_expr | uchar_expr)

Parameters char_expr
is a character-type column name, variable, or constant expression of char,
varchar, nchar, or nvarchar type.

uchar_expr
is a character-type column name, variable, or constant expression of unichar
or univarchar type.

Examples Example 1

select char_length(notes) from titles
where title_id = "PC9999"

39

Example 2

declare @var1 varchar(20), @var2 varchar(20), @char
char(20)
select @var1 = "abcd", @var2 = "abcd ",

@char = "abcd"
select char_length(@var1), char_length(@var2),
char_length(@char)

 ----------- ----------- -----------
4 8 20

Usage • char_length, a string function, returns an integer representing the number
of characters in a character expression or text value.

• For variable-length columns and variables, char_length returns the number
of characters (not the defined length of the column or variable). If explicit
trailing blanks are included in variable-length variables, they are not
stripped. For literals and fixed-length character columns and variables,
char_length does not strip the expression of trailing blanks (see Example
2).

• For unitext, unichar, and univarchar columns, char_length returns the
number of Unicode values (16-bit), with one surrogate pair counted as two
Unicode values. For example, this is what is returned if a unitext column
ut contains row value U+0041U+0042U+d800dc00:

select char_length(ut) from unitable

char_length

92 Adaptive Server Enterprise

4

• For multibyte character sets, the number of characters in the expression is
usually fewer than the number of bytes; use datalength to determine the
number of bytes.

• For Unicode expressions, returns the number of Unicode values (not
bytes) in an expression. Surrogate pairs count as two Unicode values.

• If char_expr or uchar_expr is NULL, char_length returns NULL.

• For general information about string functions, see “String functions” on
page 67.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute char_length.

See also Function datalength

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 93

charindex
Description Returns an integer representing the starting position of an expression.

Syntax charindex(expression1, expression2)

Parameters expression
is a binary or character column name, variable, or constant expression. Can
be char, varchar, nchar, nvarchar, unichar or univarchar, binary, or varbinary.

Examples Returns the position at which the character expression “wonderful” begins in
the notes column of the titles table:

select charindex("wonderful", notes)
from titles
where title_id = "TC3218"

46

Usage • charindex, a string function, searches expression2 for the first occurrence
of expression1 and returns an integer representing its starting position. If
expression1 is not found, charindex returns 0.

• If expression1 contains wildcard characters, charindex treats them as
literals.

• If expression2 is NULL, returns 0.

• If a varchar expression is given as one parameter and a unichar expression
as the other, the varchar expression is implicitly converted to unichar (with
possible truncation).

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute charindex.

See also For general information about string functions, see “String functions” on page
67.

Function patindex

coalesce

94 Adaptive Server Enterprise

coalesce
Description Supports conditional SQL expressions; can be used anywhere a value

expression can be used; alternative for a case expression.

Syntax coalesce(expression, expression [, expression]...)

Parameters coalesce
evaluates the listed expressions and returns the first non-null value. If all
expressions are null, coalesce returns NULL.

expression
is a column name, a constant, a function, a subquery, or any combination of
column names, constants, and functions connected by arithmetic or bitwise
operators. For more information about expressions, see “Expressions” on
page 275.

Examples Example 1 Returns the first occurrence of a non-null value in either the lowqty
or highqty column of the discounts table:

select stor_id, discount,
coalesce (lowqty, highqty)

from discounts

Example 2 An alternative way of writing Example 1:

select stor_id, discount,
case

when lowqty is not NULL then lowqty
else highqty

end
from discounts

Usage • coalesce expression simplifies standard SQL expressions by allowing you
to express a search condition as a simple comparison instead of using a
when...then construct.

• You can use coalesce expressions anywhere an expression in SQL.

• At least one result of the coalesce expression must return a non-null value.
This example produces the following error message:

select price, coalesce (NULL, NULL, NULL)
from titles

All result expressions in a CASE expression must not be NULL.

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 95

• If your query produces a variety of datatypes, the datatype of a case
expression result is determined by datatype hierarchy, as described in
“Datatypes of mixed-mode expressions” on page 7. If you specify two
datatypes that Adaptive Server cannot implicitly convert (for example,
char and int), the query fails.

• coalesce is an abbreviated form of a case expression. Example 2 describes
an alternative way of writing the coalesce statement.

• coalesce must be followed by at least two expressions. This example
produces the following error message:

select stor_id, discount, coalesce (highqty)
from discounts

A single coalesce element is illegal in a COALESCE expression.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute coalesce.

See also Commands case, nullif, select, if...else, where clause

col_length

96 Adaptive Server Enterprise

col_length
Description Returns the defined length of a column.

Syntax col_length(object_name, column_name)

Parameters object_name
is name of a database object, such as a table, view, procedure, trigger,
default, or rule. The name can be fully qualified (that is, it can include the
database and owner name). It must be enclosed in quotes.

column_name
is the name of the column.

Examples Finds the length of the title column in the titles table. The “x” gives a column
heading to the result:

select x = col_length("titles", "title")

 x

80

Usage • col_length, a system function, returns the defined length of column.

• For general information about system functions, see “System functions”
on page 68.

• To find the actual length of the data stored in each row, use datalength.

• For text, unitext, and image columns, col_length returns 16, the length of the
binary(16) pointer to the actual text page.

• For unichar columns, the defined length is the number of Unicode values
declared when the column was defined (not the number of bytes
represented).

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute col_length.

See also Function datalength

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 97

col_name
Description Returns the name of the column where the table and column IDs are specified,

and can be up to 255 bytes in length.

Syntax col_name(object_id, column_id [, database_id])

Parameters object_id
is a numeric expression that is an object ID for a table, view, or other
database object. These are stored in the id column of sysobjects.

column_id
is a numeric expression that is a column ID of a column. These are stored in
the colid column of syscolumns.

database_id
is a numeric expression that is the ID for a database. These are stored in the
db_id column of sysdatabases.

Examples select col_name(208003772, 2)

title

Usage • col_name, a system function, returns the column’s name.

• For general information about system functions, see “System functions”
on page 68.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute col_name.

See also Functions db_id, object_id

compare

98 Adaptive Server Enterprise

compare
Description Allows you to directly compare two character strings based on alternate

collation rules.

Syntax compare ({char_expression1|uchar_expression1},
{char_expression2|uchar_expression2}),
[{collation_name | collation_ID}]

Parameters char_expression1 or uchar_expression1
are the character expressions to compare to char_expression2 or
uchar_expression 2.

char_expression2 or uchar_expression2
are the character expressions against which to compare char_expression1 or
uchar_expression1.

char_expression1 and char_expression2 can be:

• Character type (char, varchar, nchar, or nvarchar)

• Character variable, or

• Constant character expression, enclosed in single or double quotation
marks

uchar_expression1 and uchar_expression2 can be:

• Character type (unichar or univarchar)

• Character variable, or

• Constant character expression, enclosed in single or double quotation
marks

collation_name
can be a quoted string or a character variable that specifies the collation to
use. Table 2-5 on page 101 shows the valid values.

collation_ID
is an integer constant or a variable that specifies the collation to use. Table 2-
5 on page 101 shows the valid values.

Examples Example 1 Compares aaa and bbb:

1> select compare ("aaa","bbb")
2> go

-1

(1 row affected)

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 99

Alternatively, you can also compare aaa and bbb using this format:

1> select compare (("aaa"),("bbb"))
2> go

-1

(1 row affected)

Example 2 Compares aaa and bbb and specifies binary sort order:

1> select compare ("aaa","bbb","binary")
2> go

-1

(1 row affected)

Alternatively, you can compare aaa and bbb using this format, and the collation
ID instead of the collation name:

1> select compare (("aaa"),("bbb"),(50))
2> go

-1

(1 row affected)

Usage • The compare function returns the following values, based on the collation
rules that you chose:

• 1 – indicates that char_expression1 or uchar_expression1 is greater
than char_expression2 or uchar_expression2.

• 0 – indicates that char_expression1 or uchar_expression1 is equal to
char_expression2 or uchar_expression2.

• -1 – indicates that char_expression1 or uchar_expression1 is less than
char_expression2 or uchar expression2.

• compare can generate up to six bytes of collation information for each
input character. Therefore, the result from using compare may exceed the
length limit of the varbinary datatype. If this happens, the result is
truncated to fit. Adaptive Server issues a warning message, but the query
or transaction that contained the compare function continues to run. Since
this limit is dependent on the logical page size of your server, truncation
removes result bytes for each input character until the result string is less
than the following for DOL and APL tables:

compare

100 Adaptive Server Enterprise

Table 2-4: Maximum row and column length—APL and DOL

• Both char_expression1, uchar_expression1, and char_expression2,
uchar_expression2 must be characters that are encoded in the server’s
default character set.

• char_expression1, uchar_expression 1, or char_expression2,
uchar_expression2, or both, can be empty strings:

• If char_expression2 or uchar_expression2 is empty, the function
returns 1.

• If both strings are empty, then they are equal, and the function returns
0.

• If char_expression1 or uchar_expression 1 is empty, the function
returns -1.

The compare function does not equate empty strings and strings containing
only spaces. compare uses the sortkey function to generate collation keys
for comparison. Therefore, a truly empty string, a string with one space, or
a string with two spaces do not compare equally.

• If either char_expression1, uchar_expression1; or char_expression2,
uchar_expression2 is NULL, then the result is NULL.

• If a varchar expression is given as one parameter and a unichar expression
is given as the other, the varchar expression is implicitly converted to
unichar (with possible truncation).

• If you do not specify a value for collation_name or collation_ID, compare
assumes binary collation.

Locking scheme Page size Maximum row length Maximum column length

APL tables 2K (2048 bytes) 1962 1960 bytes

4K (4096 bytes) 4010 4008 bytes

8K (8192 bytes) 8106 8104 bytes

16K (16384 bytes) 16298 16296 bytes

DOL tables 2K (2048 bytes) 1964 1958 bytes

4K (4096 bytes) 4012 4006 bytes

8K (8192 bytes) 8108 8102 bytes

16K (16384 bytes) 16300 16294 bytes if table does not include any
variable length columns

16K (16384 bytes) 16300 (subject to a max
start offset of varlen = 8191)

8191-6-2 = 8183 bytes if table includes at
least on variable length column.*

* This size includes six bytes for the row overhead and two bytes for the row length field

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 101

• Table 2-5 lists the valid values for collation_name and collation_ID.

Table 2-5: Collation names and IDs

Description Collation name Collation ID

Deafult Unicode multilingual default 20

Thai dictionary order thaidict 21

ISO14651 standard iso14651 22

UTF-16 ordering – matches UTF-8 binary ordering utf8bin 24

CP 850 Alternative – no accent altnoacc 39

CP 850 Alternative – lowercase first altdict 45

CP 850 Western European – no case preference altnocsp 46

CP 850 Scandinavian – dictionary ordering scandict 47

CP 850 Scandinavian – case-insensitive with preference scannocp 48

GB Pinyin gbpinyin n/a

Binary sort binary 50

Latin-1 English, French, German dictionary dict 51

Latin-1 English, French, German no case nocase 52

Latin-1 English, French, German no case, preference nocasep 53

Latin-1 English, French, German no accent noaccent 54

Latin-1 Spanish dictionary espdict 55

Latin-1 Spanish no case espnocs 56

Latin-1 Spanish no accent espnoac 57

ISO 8859-5 Russian dictionary rusdict 58

ISO 8859-5 Russian no case rusnocs 59

ISO 8859-5 Cyrillic dictionary cyrdict 63

ISO 8859-5 Cyrillic no case cyrnocs 64

ISO 8859-7 Greek dictionary elldict 65

ISO 8859-2 Hungarian dictionary hundict 69

ISO 8859-2 Hungarian no accents hunnoac 70

ISO 8859-2 Hungarian no case hunnocs 71

ISO 8859-9 Turkish dictionary turdict 72

ISO 8859-9 Turkish no accents turknoac 73

ISO 8859-9 Turkish no case turknocs 74

CP932 binary ordering cp932bin 129

Chinese phonetic ordering dynix 130

GB2312 binary ordering gb2312bn 137

Common Cyrillic dictionary cyrdict 140

Turkish dictionary turdict 155

compare

102 Adaptive Server Enterprise

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute compare.

See also Function sortkey

EUCKSC binary ordering euckscbn 161

Chinese phonetic ordering gbpinyin 163

Russian dictionary ordering rusdict 165

SJIS binary ordering sjisbin 179

EUCJIS binary ordering eucjisbn 192

BIG5 binary ordering big5bin 194

Shift-JIS binary order sjisbin 259

Description Collation name Collation ID

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 103

convert
Description Returns the specified value, converted to another datatype or a different

datetime display format.

Syntax convert (datatype [(length) | (precision[, scale])]
[null | not null], expression [, style])

Parameters datatype
is the system-supplied datatype (for example, char(10), unichar (10),
varbinary (50), or int) into which to convert the expression. You cannot use
user-defined datatypes.

When Java is enabled in the database, datatype can also be a Java-SQL class
in the current database.

length
is an optional parameter used with char, nchar, unichar, univarchar, varchar,
nvarchar, binary, and varbinary datatypes. If you do not supply a length,
Adaptive Server truncates the data to 30 characters for the character types
and 30 bytes for the binary types. The maximum allowable length for
character and binary expression is 64K.

precision
is the number of significant digits in a numeric or decimal datatype. For float
datatypes, precision is the number of significant binary digits in the
mantissa. If you do not supply a precision, Adaptive Server uses the default
precision of 18 for numeric and decimal datatypes.

scale
is the number of digits to the right of the decimal point in a numeric, or
decimal datatype. If you do not supply a scale, Adaptive Server uses the
default scale of 0.

null | not null
specifies the nullabilty of the result expression. If you do not supply either
null or not null, the converted result has the same nullability as the
expression.

expression
is the value to be converted from one datatype or date format to another.

When Java is enabled in the database, expression can be a value to be
converted to a Java-SQL class.

When unichar is used as the destination datatype, the default length of 30
Unicode values is used if no length is specified.

convert

104 Adaptive Server Enterprise

style
is the display format to use for the converted data. When converting money
or smallmoney data to a character type, use a style of 1 to display a comma
after every 3 digits.

When converting datetime or smalldatetime data to a character type, use the
style numbers in Table 2-6 to specify the display format. Values in the
left-most column display 2-digit years (yy). For 4-digit years (yyyy), add
100, or use the value in the middle column.

When converting date data to a character type, use style numbers 1 through
7 (101 through 107) or 10 through 12 (110 through 112) in Table 2-6 to
specify the display format. The default value is 100 (mon dd yyyy hh:miAM
(or PM)). If date data is converted to a style that contains a time portion, that
time portion reflects the default value of zero.

When converting time data to a character type, use style number 8 or 9 (108
or 109) to specify the display format. The default is 100 (mon dd yyyy
hh:miAM (or PM)). If time data is converted to a style that contains a date
portion, the default date of Jan 1, 1900 is displayed.

Table 2-6: Date format conversions using the style parameter

Without
century (yy)

With century
(yyyy) Standard Output

- 0 or 100 Default mon dd yyyy hh:mm AM (or PM)

1 101 USA mm/dd/yy

2 2 SQL standard yy.mm.dd

 3 103 English/French dd/mm/yy

 4 104 German dd.mm.yy

 5 105 dd-mm-yy

 6 106 dd mon yy

 7 107 mon dd, yy

 8 108 HH:mm:ss

 - 9 or 109 Default + milliseconds mon dd yyyy hh:mm:sss AM (or PM)

10 110 USA mm-dd-yy

11 111 Japan yy/mm/dd

12 112 ISO yy/mm/dd

13 113 yy/mm/dd

14 114 yy/mm/dd

Key “mon” indicates a month spelled out, “mm” the month number or minutes. “HH
”indicates a 24-hour clock value, “hh” a 12-hour clock value. The last row, 23, includes a
literal “T” to separate the date and time portions of the format.

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 105

The default values (style 0 or 100), and style 9 or 109 return the century
(yyyy). When converting to char or varchar from smalldatetime, styles that
include seconds or milliseconds show zeros in those positions.

Examples Example 1

select title, convert(char(12), total_sales)
from titles

Example 2

select title, total_sales
from titles
where convert(char(20), total_sales) like "1%"

Example 3 Converts the current date to style 3, dd/mm/yy:

select convert(char(12), getdate(), 3)

Example 4 If the value pubdate can be null, you must use varchar rather than
char, or errors may result:

select convert(varchar(12), pubdate, 3) from titles

Example 5 Returns the integer equivalent of the string “0x00000100”. Results
can vary from one platform to another:

select convert(integer, 0x00000100)

Example 6 Returns the platform-specific bit pattern as a Sybase binary type:

select convert (binary, 10)

14 114 hh:mi:ss:mmmAM(or PM)

15 115 dd/yy/mm

16 116 mon dd yy HH:mm:ss

17 117 hh:mmAM

18 118 HH:mm

19 119 hh:mm:ss:zzzAM

20 120 hh:mm:ss:zzz

21 121 yy/mm/dd

22 122 yy/mm/dd

23 123 yyyy-mm-ddTHH:mm:ss

Without
century (yy)

With century
(yyyy) Standard Output

Key “mon” indicates a month spelled out, “mm” the month number or minutes. “HH
”indicates a 24-hour clock value, “hh” a 12-hour clock value. The last row, 23, includes a
literal “T” to separate the date and time portions of the format.

convert

106 Adaptive Server Enterprise

Example 7 Returns 1, the bit string equivalent of $1.11:

select convert(bit, $1.11)

Example 8 Creates #tempsales with total_sales of datatype char(100), and does
not allow null values. Even if titles.total_sales was defined as allowing nulls,
#tempsales is created with #tempsales.total_sales not allowing null values:

select title, convert (char(100) not null, total_sales)
into #tempsales
from titles

Usage • convert, a datatype conversion function, converts between a wide variety
of datatypes and reformats date/time and money data for display purposes.

• For more information about datatype conversion, see “Datatype
conversion functions” on page 55.

• convert – returns the specified value, converted to another datatype or a
different datetime display format. When converting from unitext to other
character and binary datatypes, the result is limited to the maximum length
of the destination datatype. If the length is not specified, the converted
value has a default size of 30 bytes. If you are using enabled enable
surrogate processing, a surrogate pair is returned as a whole. For example,
this is what is returned if you convert a unitext column that contains data
U+0041U+0042U+20acU+0043 (stands for “AB €”) to a UTF-8
varchar(3) column:

select convert(varchar(3), ut) from untable

AB

• convert() generates a domain error when the argument falls outside the
range over which the function is defined. This should happen rarely.

• Use null or not null to specify the nullability of a target column.
Specifically, this can be used with select into to create a new table and
change the datatype and nullability of existing columns in the source table
(See Example 8, above).

The result is an undefined value if:

• The expression being converted is to a not null result.

• The expression’s value is null.

Use the following select statement to generate a known non-NULL value
for predictable results:

select convert(int not null isnull(col2, 5)) from table1

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 107

• You can use convert to convert an image column to binary or varbinary. You
are limited to the maximum length of the binary datatypes, which is
determined by the maximum column size for your server’s logical page
size. If you do not specify the length, the converted value has a default
length of 30 characters.

• You can use unichar expressions as a destination datatype or you can
convert them to another datatype. unichar expressions can be converted
either explicitly between any other datatype supported by the server, or
implicitly.

• If you do not specify the length when unichar is used as a destination type,
the default length of 30 Unicode values is used. If the length of the
destination type is not large enough to accommodate the given expression,
an error message appears.

Implicit conversion

Implicit conversion between types when the primary fields do not match may
cause data truncation, the insertion of a default value, or an error message to be
raised. For example, when a datetime value is converted to a date value, the
time portion is truncated, leaving only the date portion. If a time value is
converted to a datetime value, a default date portion of Jan 1, 1900 is added to
the new datetime value. If a date value is converted to a datetime value, a
default time portion of 00:00:00:000 is added to the datetime value.

DATE -> VARCHAR, CHAR, BINARY, VARBINARY, DATETIME, SMALLDATETIME
TIME -> VARCHAR, CHAR, BINARY, VARBINARY, DATETIME, SMALLDATETIME
VARCHAR, CHAR, BINARY, VARBINARY, DATETIME, SMALLDATETIME -> DATE
VARCHAR, CHAR, BINARY, VARBINARY, DATETIME, SMALLDATETIME -> TIME

Explicit conversion

If you attempt to explicitly convert a date to a datetime and the value is outside
the datetime range, such as “Jan 1, 1000” the conversion is not allowed and an
informative error message is raised.

DATE -> UNICHAR, UNIVARCHAR
TIME -> UNICHAR, UNIVARCHAR
UNICHAR, UNIVARCHAR -> DATE
UNICHAR, UNIVARCHAR -> TIME

Conversions involving Java classes

• When Java is enabled in the database, you can use convert to change
datatypes in these ways:

• Convert Java object types to SQL datatypes.

• Convert SQL datatypes to Java types.

convert

108 Adaptive Server Enterprise

• Convert any Java-SQL class installed in Adaptive Server to any other
Java-SQL class installed in Adaptive Server if the compile-time
datatype of the expression (the source class) is a subclass or
superclass of the target class.

The result of the conversion is associated with the current database.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute convert.

See also Documents Java in Adaptive Server Enterprise for a list of allowed datatype
mappings and more information about datatype conversions involving Java
classes.

Datatypes User-defined datatypes

Functions hextoint, inttohex

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 109

cos
Description Returns the cosine of the specified angle.

Syntax cos(angle)

Parameters angle
is any approximate numeric (float, real, or double precision) column name,
variable, or constant expression.

Examples select cos(44)

0.999843

Usage • cos, a mathematical function, returns the cosine of the specified angle, in
radians.

• For general information about mathematical functions, see “Mathematical
functions” on page 65.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute cos.

See also Functions acos, degrees, radians, sin

cot

110 Adaptive Server Enterprise

cot
Description Returns the cotangent of the specified angle.

Syntax cot(angle)

Parameters angle
is any approximate numeric (float, real, or double precision) column name,
variable, or constant expression.

Examples select cot(90)

-0.501203

Usage • cot, a mathematical function, returns the cotangent of the specified angle,
in radians.

• For general information about mathematical functions, see “Mathematical
functions” on page 65.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute cot.

See also Functions degrees, radians, sin

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 111

count
Description Returns the number of (distinct) non-null values, or the number of selected

rows as an integer.

Syntax count([all | distinct] expression)

Parameters all
applies count to all values. all is the default.

distinct
eliminates duplicate values before count is applied. distinct is optional.

expression
is a column name, constant, function, any combination of column names,
constants, and functions connected by arithmetic or bitwise operators, or a
subquery. With aggregates, an expression is usually a column name. For
more information, see “Expressions” on page 275.

Examples Example 1 Finds the number of different cities in which authors live:

select count(distinct city)
from authors

Example 2 Lists the types in the titles table, but eliminates the types that
include only one book or none:

select type
from titles
group by type
having count(*) > 1

Usage • count, an aggregate function, finds the number of non-null values in a
column. For general information about aggregate functions, see
“Aggregate functions” on page 49.

• When distinct is specified, count finds the number of unique non-null
values. count can be used with all datatypes, including unichar, but cannot
be used with text and image. Null values are ignored when counting.

• count(column_name) returns a value of 0 on empty tables, on columns that
contain only null values, and on groups that contain only null values.

• count(*) finds the number of rows. count(*) does not take any arguments,
and cannot be used with distinct. All rows are counted, regardless of the
presence of null values.

count

112 Adaptive Server Enterprise

• When tables are being joined, include count(*) in the select list to produce
the count of the number of rows in the joined results. If the objective is to
count the number of rows from one table that match criteria, use
count(column_name).

• You can use count as an existence check in a subquery. For example:

select * from tab where 0 <
(select count(*) from tab2 where ...)

However, because count() counts all matching values, exists or in may
return results faster. For example:

select * from tab where exists
(select * from tab2 where ...)

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute count.

See also Commands compute clause, group by and having clauses, select, where
clause

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 113

count_big
Description Returns the number of (distinct) non-null values or the number of selected rows

as a bigint.

Syntax count_big([all | distinct] expression)

Parameters all
applies count_big to all values. all is the default.

distinct
eliminates duplicate values before count_big is applied. distinct is optional.

expression
is a column name, constant, function, any combination of column names,
constants, and functions connected by arithmetic or bitwise operators, or a
subquery. With aggregates, an expression is usually a column name.

Examples Finds the number of occurances of name in systypes:

1> select count_big(name) from systypes
2> go

42

Usage • count_big, an aggregate function, finds the number of non-null values in a
column.

• When distinct is specified, count_big finds the number of unique non-null
values. Null values are ignored when counting.

• count_big(column_name) returns a value of 0 on empty tables, on columns
that contain only null values, and on groups that contain only null values.

• count_big(*) finds the number of rows. count_big(*) does not take any
arguments, and cannot be used with distinct. All rows are counted,
regardless of the presence of null values.

• When tables are being joined, include count_big(*) in the select list to
produce the count of the number of rows in the joined results. If the
objective is to count the number of rows from one table that match criteria,
use count_big(column_name).

• You can use count_big as an existence check in a subquery. For example:

select * from tab where 0 <
 (select count_big(*) from tab2 where ...)

However, because count_big counts all matching values, exists or in may
return results faster. For example:

count_big

114 Adaptive Server Enterprise

select * from tab where exists
 (select * from tab2 where ...)

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute count_big.

See also Commands compute clause, group by and having clauses, select, where
clause

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 115

current_date
Description Returns the current date.

Syntax current_date()

Parameters None.

Examples Example 1 Identifies the current date with datename:

1> select datename(month, current_date())
2> go

August

Example 2 Identifies the current date with datepart:

1> select datepart(month, current_date())
2> go

8

(1 row affected)

Usage Finds the current date as it exists on the server.

Standards ANSI SQL – Compliance level: Entry-level compliant.

Permissions Any user can execute current_date.

See also Datatypes Date and time datatypes

Commands select, where clause

Functions dateadd, datename, datepart, getdate

current_time

116 Adaptive Server Enterprise

current_time
Description Returns the current time.

Syntax current_time()

Parameters None.

Examples Example 1 Finds the current time:

1> select current_date()
2> go

Aug 29 2003

(1 row affected)

Example 2 Use with datename:

1> select datename(minute, current_time())
2> go

45

(1 row affected)

Usage Finds the current time as it exists on the server

Standards ANSI SQL – Compliance level: Entry-level compliant.

Permissions Any user can execute current_time.

See also Datatypes Date and time datatypes

Commands select, where clause

Functions dateadd, datename, datepart, getdate

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 117

curunreservedpgs
Description Returns the number of free pages in the specified disk piece.

Syntax curunreservedpgs (dbid, lstart, unreservedpgs)

Parameters dbid
is the ID for a database. These are stored in the db_id column of
sysdatabases.

lstart
is a page within the disk piece for which pages are to be returned.

unreservedpgs
is the default value to return if the dbtable is presently unavailable for the
requested database.

Examples Example 1 Returns the database name, device name, and the number of
unreserved pages for each device fragment

If a database is open, curunreservedpgs takes the value from memory. If it is not
in use, the value is taken from the third parameter you specify in
curunreservedpgs. In this example, the value comes from the unreservedpgs
column in the sysusages table.

select db_name(dbid), d.name,
curunreservedpgs(dbid, lstart, unreservedpgs)
from sysusages u, sysdevices d
where d.low <= u.size + vstart

and d.high >= u.size + vstart -1
and d.status &2 = 2

name
------------------------------ -------------------------- -----------

master master 1634
tempdb master 423
model master 423
pubs2 master 72
sybsystemdb master 399
sybsystemprocs master 6577
sybsyntax master 359

(7 rows affected)

Example 2 Displays the number of free pages on the segment for dbid starting
on sysusages.lstart:

select curunreservedpgs (dbid, sysusages.lstart, 0)

curunreservedpgs

118 Adaptive Server Enterprise

Usage • curunreservedpgs, a system function, returns the number of free pages in a
disk piece. For general information about system functions, see “System
functions” on page 68.

• If a database is open, the value returned by curunreservedpgs is taken from
memory. If it is not in use, the value is taken from the third parameter you
specify in curunreservedpgs.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute curunreservedpgs.

See also Functions db_id, lct_admin

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 119

data_pages
Description Returns the number of pages used by the specified table, index, or a specific

partition. The result does not include pages used for internal structures.

This function replaces data_pgs and ptn_data_pgs from versions of Adaptive
Server earlier than 15.0.

Syntax data_pages(dbid, object_id [, indid [, ptnid]])

Parameters dbid
is the database ID of the database that contains the data pages.

object_id
is an object ID for a table, view, or other database object. These are stored
in the id column of sysobjects.

indid
is the index ID of the target index.

ptnid
is the partition ID of the target partition.

Examples Example 1 Returns the number of pages used by the object with a object ID of
31000114 in the specified database (including any indexes):

select data_pages(5, 31000114)

Example 2 Returns the number of pages used by the object in the data layer,
regardless of whether or not a clustered index exists:

select data_pages(5, 31000114, 0)

Example 3 Returns the number of pages used by the object in the index layer
for a clustered index. This does not include the pages used by the data layer:

select data_pages(5, 31000114, 1)

Example 4 Returns the number of pages used by the object in the data layer of
the specific partition, which in this case is 2323242432:

select data_pages(5, 31000114, 0, 2323242432)

Usage In the case of an APL (all-pages lock) table, if a clustered index exists on the
table, then passing in an indid of:

• 0 – reports the data pages.

• 1 – reports the index pages.

All erroneous conditions return a value of zero, such as when the object_id does
not exist in the current database, or the targeted indid or ptnid cannot be found.

data_pages

120 Adaptive Server Enterprise

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute data_pages.

See also Functions object_id, row_count

System procedure sp_spaceused

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 121

datachange
Description Measures the amount of change in the data distribution since update statistics

last ran. Specifically, it measures the number of inserts, updates, and deletes
that have occurred on the given object, partition, or column, and helps you
determine if invoking update statistics would benefit the query plan.

Syntax datachange(object_name, partition_name, column_name)

Parameters object_name
is the object name in the current database.

partition_name
is the data partition name. This value can be null.

column_name
is the column name for which the datachange is requested. This value can
be null.

Examples Example 1 Provides the percentage change in the au_id column in the
author_ptn partition:

select datachange("authors", "author_ptn", "au_id")

Example 2 Provides the percentage change in the authors table on the au_ptn
partition. The null value for the column_name parameter indicates that this
checks all columns that have historgram statistics and obtains the maximum
datachange value from among them.

select datachange("authors", "au_ptn", null)

Usage • The datachange function requires all three parameters.

• datachange is a measure of the inserts, deletes and updates but it does not
count them individually. datachange counts an update as a delete and an
insert, so each update contributes a count of 2 towards the datachange
counter.

• The datachange built-in returns the datachange count as a percent of the
number of rows, but it bases this percentage on the number of rows
remaining, not the original number of rows. For example, if a table has five
rows and one row is deleted, datachange reports a value of 25 % since the
current row count is 4 and the datachange counter is 1.

• datachange is expressed as a percentage of the total number of rows in the
table, or partition if you specify a partition. The percentage value can be
greater than 100 percent because the number of changes to an object can
be much greater than the number of rows in the table, particularly when
the number of deletes and updates happening to a table is very high.

datachange

122 Adaptive Server Enterprise

• The value that datachange displays is the in-memory value. This can differ
from the on-disk value because the on-disk value gets updated by the
housekeeper, when you run sp_flushstats, or when an object descriptor
gets flushed.

• The datachange values is not reset when histograms are created for global
indexes on partitioned tables.

datachange is reset or initialized to zero when:

• New columns are added, and their datachange value is initialized.

• New partitions are added, and their datachange value is initialized.

• Data-partition-specific histograms are created, deleted or updated. When
this occurs, the datachange value of the histograms is reset for the
corresponding column and partition.

• Data is truncated for a table or partition, and its datachange value is reset

• A table is repartitioned either directly or indirectly as a result of some other
command, and the datachange value is reset for all the table’s partitions
and columns.

• A table is unpartitioned, and the datachange value is reset for all columns
for the table.

datachange has the following restrictions:

• datachange statistics are not maintained on tables in system tempdbs,
user-defined tempdbs, system tables, or proxy tables.

• datachange updates are non-transactional. If you roll back a transaction,
the datachange values are not rolled back, and these values can become
inaccurate.

• If memory allocation for column-level counters fails, Adaptive Server
tracks partition-level datachange values instead of column-level values.

• If Adaptive Server does not maintain column-level datachange values, it
then resets the partition-level datachange values whenever the datachange
values for a column are reset.

Permissions Any user can execute datachange.

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 123

datalength
Description Returns the actual length, in bytes, of the specified column or string.

Syntax datalength(expression)

Parameters expression
is a column name, variable, constant expression, or a combination of any of
these that evaluates to a single value. expression can be of any datatype, an
is usually a column name. If expression is a character constant, it must be
enclosed in quotes.

Examples Finds the length of the pub_name column in the publishers table:

select Length = datalength(pub_name)
from publishers

Length

13
16
20

Usage • datalength, a system function, returns the length of expression in bytes.

• For columns defined for the Unicode datatype, datalength returns the
actual number of bytes of the data stored in each row. For example, this is
what is returned if a unitext column ut contains row value
U+0041U+0042U+d800dc00:

select datalength(ut) from unitable

8

• datalength finds the actual length of the data stored in each row. datalength
is useful on varchar, univarchar, varbinary, text, and image datatypes, since
these datatypes can store variable lengths (and do not store trailing
blanks). When a char or unichar value is declared to allow nulls, Adaptive
Server stores it internally as varchar or univarchar. For all other datatypes,
datalength reports thr defined length.

• datalength of any NULL data returns NULL.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute datalength.

See also Functions char_length, col_length

dateadd

124 Adaptive Server Enterprise

dateadd
Description Returns the date produced by adding or subtracting a given number of years,

quarters, hours, or other date parts to the specified date.

Syntax dateadd(date_part, integer, date expression)

Parameters date_part
is a date part or abbreviation. For a list of the date parts and abbreviations
recognized by Adaptive Server, see “Date parts” on page 64.

numeric
is an integer expression.

date expression
is an expression of type datetime, smalldatetime, date, time, or a character
string in a datetime format.

Examples Example 1 Displays the new publication dates when the publication dates of
all the books in the titles table slip by 21 days:

select newpubdate = dateadd(day, 21, pubdate)
from titles

Example 2 Add one day to a date:

declare @a date
select @a = "apr 12, 9999"
select dateadd(dd, 1, @a)

Apr 13 9999

Example 3 Subtracts five minutes to a time:

select dateadd(mi, -5, convert(time, "14:20:00"))

2:15PM

Example 4 Add one day to a time and the time remains the same:

declare @a time
select @a = "14:20:00"
select dateadd(dd, 1, @a)

2:20PM

Example 5 Although there are limits for each date_part, as with datetime
values, you can add higher values resulting in the values rolling over to the next
significant field:

--Add 24 hours to a datetime

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 125

select dateadd(hh, 24, "4/1/1979")

Apr 2 1979 12:00AM

--Add 24 hours to a date
select dateadd(hh, 24, "4/1/1979")

Apr 2 1979

Usage • dateadd, a date function, adds an interval to a specified date. For more
information about date functions, see “Date functions” on page 64.

• dateadd takes three arguments: the date part, a number, and a date. The
result is a datetime value equal to the date plus the number of date parts.

If the date argument is a smalldatetime value, the result is also a
smalldatetime. You can use dateadd to add seconds or milliseconds to a
smalldatetime, but such an addition is meaningful only if the result date
returned by dateadd changes by at least one minute.

• Use the datetime datatype only for dates after January 1, 1753. datetime
values must be enclosed in single or double quotes. Use the date datatype
for dates from January 1, 0001 to 9999. date must be enclosed in single or
double quotes.Use char, nchar, varchar, or nvarchar for earlier dates.
Adaptive Server recognizes a wide variety of date formats. For more
information, see “User-defined datatypes” on page 41 and “Datatype
conversion functions” on page 55.

Adaptive Server automatically converts between character and datetime
values when necessary (for example, when you compare a character value
to a datetime value).

• Using the date part weekday or dw with dateadd is not logical, and
produces spurious results. Use day or dd instead.

dateadd

126 Adaptive Server Enterprise

Table 2-7: date_part recognized abbreviations

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute dateadd.

See also Datatypes Date and time datatypes

Commands select, where clause

Functions datediff, datename, datepart, getdate

Date part Abbreviation Values

Year yy 1753 – 9999 (datetime)

1900 – 2079 (smalldatetime)

0001 – 9999 (date)

Quarter qq 1 – 4

Month mm 1 – 12

Week wk 1054

Day dd 1 – 7

dayofyear dy 1 – 366

Weekday dw 1 – 7

Hour hh 0 – 23

Minute mi 0 – 59

Second ss 0 – 59

millisecond ms 0 – 999

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 127

datediff
Description Returns the difference between two dates.

Syntax datediff(datepart, date expression1, date expression2)

Parameters datepart
is a date part or abbreviation. For a list of the date parts and abbreviations
recognized by Adaptive Server, see “Date parts” on page 64.

date expression1
is an expression of type datetime, smalldatetime, date, time, or a character
string in a datetime format.

date expression2
is an expression of type datetime, smalldatetime, date, time, or a character
string in a datetime format.

Examples Example 1 Finds the number of days that have elapsed between pubdate and
the current date (obtained with the getdate function):

select newdate = datediff(day, pubdate, getdate())
from titles

Example 2 Find the number of hours between two times:

declare @a time
declare @b time
select @a = "20:43:22"
select @b = "10:43:22"
select datediff(hh, @a, @b)

-10

Example 3 Find the number of hours between two dates:

declare @a date
declare @b date
select @a = "apr 1, 1999"
select @b = "apr 2, 1999"
select datediff(hh, @a, @b)

24

Example 4 Find the number of days between two times:

declare @a time
declare @b time
select @a = "20:43:22"
select @b = "10:43:22"
select datediff(dd, @a, @b)

datediff

128 Adaptive Server Enterprise

0

Example 5 Overflow size of milliseconds return value:

select datediff(ms, convert(date, "4/1/1753"), convert(date, "4/1/9999"))
Msg 535, Level 16, State 0:
Line 2:
Difference of two datetime fields caused overflow at runtime.
Command has been aborted

Usage • datediff, a date function, calculates the number of date parts between two
specified dates. For more information about date functions, see “Date
functions” on page 64.

• datediff takes three arguments. The first is a date part. The second and third
are dates. The result is a signed integer value equal to date2 - date1, in date
parts.

• datediff produces results of datatype int, and causes errors if the result is
greater than 2,147,483,647. For milliseconds, this is approximately 24
days, 20:31.846 hours. For seconds, this is 68 years, 19 days, 3:14:07
hours.

• datediff results are always truncated, not rounded, when the result is not an
even multiple of the date part. For example, using hour as the date part, the
difference between “4:00AM” and “5:50AM” is 1.

When you use day as the date part, datediff counts the number of midnights
between the two times specified. For example, the difference between
January 1, 1992, 23:00 and January 2, 1992, 01:00 is 1; the difference
between January 1, 1992 00:00 and January 1, 1992, 23:59 is 0.

• The month datepart counts the number of first-of-the-months between two
dates. For example, the difference between January 25 and February 2 is
1; the difference between January 1 and January 31 is 0.

• When you use the date part week with datediff, you see the number of
Sundays between the two dates, including the second date but not the first.
For example, the number of weeks between Sunday, January 4 and
Sunday, January 11 is 1.

• If you use smalldatetime values, they are converted to datetime values
internally for the calculation. Seconds and milliseconds in smalldatetime
values are automatically set to 0 for the purpose of the difference
calculation.

• If the second or third argument is a date, and the datepart is hour, minute,
second, or millisecond, the dates are treated as midnight.

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 129

• If the second or third argument is a time, and the datepart is year, month,
or day, then 0 is returned.

• datediff results are truncated, not rounded, when the result is not an even
multiple of the date part.

• For the smaller time units, there are overflow values, and the function
returns an overflow error if you exceed these limits:

• Milliseconds: approx 24 days

• Seconds: approx 68 years

• Minutes: approx 4083 years

• Others: No overflow limit

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute datediff.

See also Datatypes Date and time datatypes

Commands select, where clause

Functions dateadd, datename, datepart, getdate

datename

130 Adaptive Server Enterprise

datename
Description Returns the specified datepart (the first argument) of the specified date or time

(the second argument) as a character string. Takes a date, time, datetime, or
smalldatetime value as its second argument.

Syntax datename (datepart, date expression)

Parameters datepart
is a date part or abbreviation. For a list of the date parts and abbreviations
recognized by Adaptive Server, see “Date parts” on page 64.

date expression
is an expression of type datetime, smalldatetime, date, time, or a character
string in a datetime format.

Examples Example 1 Assumes a current date of November 20, 2000:

select datename(month, getdate())

November

Example 2 Finds the month name of a date:

declare @a date
select @a = "apr 12, 0001"
select datename(mm, @a)

April

Example 3 Finds the seconds of a time:

declare @a time
select @a = "20:43:22"
select datename(ss, @a)

22

Usage • datename, a date function, returns the name of the specified part (such as
the month “June”) of a datetime or smalldatetime value, as a character
string. If the result is numeric, such as “23” for the day, it is still returned
as a character string.

• For more information about date functions, see “Date functions” on page
64.

• The date part weekday or dw returns the day of the week (Sunday, Monday,
and so on) when used with datename.

• Since smalldatetime is accurate only to the minute, when a smalldatetime
value is used with datename, seconds and milliseconds are always 0.

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 131

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute datename.

See also Datatypes Date and time datatypes

Commands select, where clause

Functions dateadd, datename, datepart, getdate

datepart

132 Adaptive Server Enterprise

datepart
Description Returns the specified datepart in the first argument of the specified date (the

second argument) as an integer. Takes a date, time, datetime, or smalldatetime
value as its second argument. If the datepart is hour, minute, second, or
millisecond, the result is 0.

Syntax datepart(date_part, date expression)

Parameters date_part
is a date part. Table 2-8 lists the date parts, the abbreviations recognized by
datepart, and the acceptable values.

Table 2-8: Date parts and their values

Date part Abbreviation Values

year yy 1753 – 9999 (2079 for smalldatetime). 0001 to 9999 for date

quarter qq 1 – 4

month mm 1 – 12

week wk 1 – 54

day dd 1 – 31

dayofyear dy 1 – 366

weekday dw 1 – 7 (Sun. – Sat.)

hour hh 0 – 23

minute mi 0 – 59

second ss 0 – 59

millisecond ms 0 – 999

calweekofyear cwk 1 – 53

calyearofweek cyr 1753 – 9999 (2079 for smalldatetime). 0001 to 9999 for date

caldayofweek cdw 1 – 7

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 133

When you enter a year as two digits (yy):

• Numbers less than 50 are interpreted as 20yy. For example, 01 is 2001,
32 is 2032, and 49 is 2049.

• Numbers equal to or greater than 50 are interpreted as 19yy. For
example, 50 is 1950, 74 is 1974, and 99 is 1999.

Milliseconds can be preceded by either a colon or a period. If preceded
by a colon, the number means thousandths of a second. If preceded by
a period, a single digit means tenths of a second, two digits mean
hundredths of a second, and three digits mean thousandths of a second.
For example, “12:30:20:1” means twenty and one-thousandth of a
second past 12:30; “12:30:20.1” means twenty and one-tenth of a
second past 12:30.

date expression
is an expression of type datetime, smalldatetime, date, time, or a character
string in a datetime format.

Examples Example 1 Assumes a current date of November 25, 1995:

select datepart(month, getdate())

11

Example 2 Returns the year of publication from traditional cookbooks:

select datepart(year, pubdate) from titles where type =
"trad_cook"

1990
1985
1987

Example 3

select datepart(cwk,’1993/01/01’)

53

Example 4

select datepart(cyr,’1993/01/01’)

1992

datepart

134 Adaptive Server Enterprise

Example 5

select datepart(cdw,’1993/01/01’)

5

Example 6 Find the hours in a time:

declare @a time
select @a = "20:43:22"
select datepart(hh, @a)

20

Example 7 If a hour, minute, or second portion is requested from a date using
datename or datepar) the result is the default time, zero. If a month, day, or year
is requested from a time using datename or datepart, the result is the default
date, Jan 1 1900:

--Find the hours in a date
declare @a date
select @a = "apr 12, 0001"
select datepart(hh, @a)

0

--Find the month of a time
declare @a time
select @a = "20:43:22"
select datename(mm, @a)

January

When you give a null value to a datetime function as a parameter, NULL is
returned.

Usage • datepart, a date function, returns an integer value for the specified part of
a datetime value. For more information about date functions, see “Date
functions” on page 64.

• datepart returns a number that follows ISO standard 8601, which defines
the first day of the week and the first week of the year. Depending on
whether the datepart function includes a value for calweekofyear,
calyearofweek, or caldayorweek, the date returned may be different for the
same unit of time. For example, if Adaptive Server is configured to use
U.S. English as the default language, the following returns 1988:

datepart(cyr, "1/1/1989")

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 135

However, the following returns 1989:

datepart(yy, "1/1/1989)

This disparity occurs because the ISO standard defines the first week of
the year as the first week that includes a Thursday and begins with
Monday.

For servers using U.S. English as their default language, the first day of the
week is Sunday, and the first week of the year is the week that contains
January 4th.

• The date part weekday or dw returns the corresponding number when used
with datepart. The numbers that correspond to the names of weekdays
depend on the datefirst setting. Some language defaults (including
us_english) produce Sunday=1, Monday=2, and so on; others produce
Monday=1, Tuesday=2, and so on.You can change the default behavior on
a per-session basis with set datefirst. See the datefirst option of the set
command for more information.

• calweekofyear, which can be abbreviated as cwk, returns the ordinal
position of the week within the year. calyearofweek, which can be
abbreviated as cyr, returns the year in which the week begins.
caldayofweek, which can abbreviated as cdw, returns the ordinal position
of the day within the week. You cannot use calweekofyear, calyearofweek,
and caldayofweek as date parts for dateadd, datediff, and datename.

• Since datetime and time are only accurate to 1/300th of a second, when
these datatypes are used with datepart, milliseconds are rounded to the
nearest 1/300th second.

• Since smalldatetime is accurate only to the minute, when a smalldatetime
value is used with datepart, seconds and milliseconds are always 0.

• The values of the weekday date part are affected by the language setting.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute datepart.

See also Datatypes Date and time datatypes

Commands select, where clause

Functions dateadd, datediff, datename, getdate

day

136 Adaptive Server Enterprise

day
Description Returns an integer that represents the day in the datepart of a specified date.

Syntax day(date_expression)

Parameters date_expression
is an expression of type datetime, smalldatetime, date, or a character string in
a datetime format.

Examples Returns the integer 02:

day("11/02/03")

02

Usage day(date_expression) is equivalent to datepart(dd,date_expression).

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute day.

See also Datatypes datetime, smalldatetime, date, time

Functions datepart, month, year

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 137

db_id
Description Returns the ID number of the specified database.

Syntax db_id(database_name)

Parameters database_name
is the name of a database. database_name must be a character expression. If
it is a constant expression, it must be enclosed in quotes.

Examples Returns the ID number of sybsystemprocs:

select db_id("sybsystemprocs")

4

Usage • db_id, a system function, returns the database ID number.

• If you do not specify a database_name, db_id returns the ID number of the
current database.

• For general information about system functions, see “System functions”
on page 68.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute db_id.

See also Functions db_name, object_id

db_name

138 Adaptive Server Enterprise

db_name
Description Returns the name of the database where the ID number is specified.

Syntax db_name([database_id])

Parameters database_id
is a numeric expression for the database ID (stored in sysdatabases.dbid).

Examples Example 1 Returns the name of the current database:

select db_name()

Example 2 Returns the name of database ID 4:

select db_name(4)

sybsystemprocs

Usage • db_name, a system function, returns the database name.

• If no database_id is supplied, db_name returns the name of the current
database.

• For general information about system functions, see “System functions”
on page 68.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute db_name.

See also Functions col_name, db_id, object_name

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 139

degrees
Description Returns the size, in degrees, of an angle with the specified number of radians.

Syntax degrees(numeric)

Parameters numeric
is a number, in radians, to convert to degrees.

Examples select degrees(45)

2578

Usage • degrees, a mathematical function, converts radians to degrees. Results are
of the same type as the numeric expression.

For numeric and decimal expressions, the results have an internal
precision of 77 and a scale equal to that of the expression.

• For general information about mathematical functions, see “Mathematical
functions” on page 65.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute degrees.

See also Function radians

derived_stat

140 Adaptive Server Enterprise

derived_stat
Description Returns derived statistics for the specified object and index.

Syntax derived_stat(object_name | object_id,
index_name | index_id,
[partition_name | partition_id,]
“statistic”)

Parameters object_name
is the name of the object you are interested in. If you do not specify a fully
qualified object name, derived_stat searches the current database.

object_id
is an alternative to object_name, and is the object ID of the object you are
interested in. object_id must be in the current database

index_name
is the name of the index, belonging to the specified object that you are
interested in.

index_id
is an alternative to index_name, and is the index ID of the specified object
that you are interested in.

partition_name
is the name of the partition, belonging to the specific partition that you are
interested in.

partition_id
is an alternative to partition_name, and is the partition ID of the specified
object that you are interested in.

“statistic”
the derived statistic to be returned. Available statistics are:

Examples Example 1 Selects the space utilization for the titleidind index of the titles table:

select derived_stat("titles", "titleidind", "space utilization")

Value Returns

data page cluster ratio or dpcr The data page cluster ratio for the object/index pair

index page cluster ratio or ipcr The index page cluster ratio for the object/index pair

data row cluster ratio or drcr The data row cluster ratio for the object/index pair

large io efficiency or lgio The large I/O efficiency for the object/index pair

space utilization or sput The space utilization for the object/index pair

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 141

Example 2 Selects the data page cluster ratio for index ID 2 of the titles table.
Note that you can use either "dpcr" or "data page cluster ratio":

select derived_stat("titles", 2, "dpcr")

Example 3 Statistics are reported for the entire object, as neither the partition
ID nor name is not specified:

1> select derived_stat(object_id("t1"), 2, "drcr")
2> go

0.576923

Example 4 Reports the statistic for the partition tl_928003396:

1> select derived_stat(object_id("t1"), 0, "t1_928003306", "drcr")
2> go

1.000000

(1 row affected)

Usage • derived_stat returns a double precision value.

• The values returned by derived_stat match the values presented by the
optdiag utility.

• If the specified object or index does not exist, derived_stat returns NULL.

• Specifying an invalid statistic type results in an error message.

• Using the optional partition_name or partition_id reports the target partition;
otherwise, derived_stat reports for the entire object.

• If you provide:

• Four arguments – derived_stat uses the third argument as the partition,
and returns derived statistics on the fourth argument.

• Three arguments – derived_stat assumes you did not specifiy a
partition, and returns derived statistic on the third argument.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Only the table owner can execute derived_stat.

See also Document Performance and Tuning Guide for:

• “Access Methods and Query Costing for Single Tables”

• “Statistics Tables and Displaying Statistics with optdiag”

derived_stat

142 Adaptive Server Enterprise

Utility optdiag

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 143

difference
Description Returns the difference between two soundex values.

Syntax difference(expr1,expr2)

Parameters expr1
is a character-type column name, variable, or constant expression of char,
varchar, nchar, nvarchar, or unichar type.

expr2
is another character-type column name, variable, or constant expression of
char, varchar, nchar, nvarchar, or unichar type.

Examples Example 1

select difference("smithers", "smothers")

4

Example 2

select difference("smothers", "brothers")

2

Usage • difference, a string function, returns an integer representing the difference
between two soundex values.

• The difference function compares two strings and evaluates the similarity
between them, returning a value from 0 to 4. The best match is 4.

The string values must be composed of a contiguous sequence of valid
single- or double-byte roman letters.

• If expr1 or expr2 is NULL, returns NULL.

• If you give a varchar expression is given as one parameter and a unichar
expression as the other, the varchar expression is implicitly converted to
unichar (with possible truncation).

• For general information about string functions, see “String functions” on
page 67.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute difference.

See also Function soundex

exp

144 Adaptive Server Enterprise

exp
Description Returns the value that results from raising the constant to the specified power.

Syntax exp(approx_numeric)

Parameters approx_numeric
is any approximate numeric (float, real, or double precision) column name,
variable, or constant expression.

Examples select exp(3)

20.085537

Usage • exp, a mathematical function, returns the exponential value of the
specified value.

• For general information about mathematical functions, see “Mathematical
functions” on page 65.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute exp.

See also Functions log, log10, power

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 145

floor
Description Returns the largest integer that is less than or equal to the specified value.

Syntax floor(numeric)

Parameters numeric
is any exact numeric (numeric, dec, decimal, tinyint, smallint, int, or bigint),
approximate numeric (float, real, or double precision), or money column,
variable, constant expression, or a combination of these.

Examples Example 1

select floor(123)

123

Example 2

select floor(123.45)

123

Example 3

select floor(1.2345E2)

123.000000

Example 4

select floor(-123.45)

-124

Example 5

select floor(-1.2345E2)

-124.000000

Example 6

select floor($123.45)

123.00

floor

146 Adaptive Server Enterprise

Usage • floor, a mathematical function, returns the largest integer that is less than
or equal to the specified value. Results are of the same type as the numeric
expression.

For numeric and decimal expressions, the results have a precision equal to
that of the expression and a scale of 0.

• For general information about mathematical functions, see “Mathematical
functions” on page 65.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute floor.

See also Functions abs, ceiling, round, sign

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 147

get_appcontext
Description Returns the value of the attribute in a specified context. get_appcontext is a

built-in function provided by the Application Context Facility (ACF).

Syntax get_appcontext (“context_name”, “attribute_name”)

Parameters context_name
is a row specifying an application context name. It is saved as datatype
char(30).

attribute_name
is a row specifying an application context attribute name. It is saved as
datatype char(30).

Examples Example 1 Shows VALUE1 returned for ATTR1.

select get_appcontext("CONTEXT1", "ATTR1")

VALUE1

ATTR1 does not exist in CONTEXT2:

select get_appcontext("CONTEXT2", "ATTR1")

Example 2 Shows the result when a user without appropriate permissions
attempts to get the application context.

select get_appcontext("CONTEXT1", "ATTR2", "VALUE1")

Select permission denied on built-in get_appcontext, database dbid

-1

Usage • This function returns 0 for success and -1 for failure.

• If the attribute you require does not exist in the application context,
get_appcontext returns NULL.

• get_appcontext saves attributes as char datatypes. If you are creating an
access rule that compares the attribute value to other datatypes, the rule
should convert the char data to the appropriate datatype.

• All arguments for this function are required.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Permissions depend on the user profile and the application profile, and are
stored by the ACF.

See also For more information on the ACF, see “Row-level access control” in Chapter
11, “Managing User Permissions” of the System Administration Guide.

get_appcontext

148 Adaptive Server Enterprise

Functions get_appcontext, list_appcontext, rm_appcontext, set_appcontext

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 149

getdate
Description Returns the current system date and time.

Syntax getdate()

Parameters None.

Examples Example 1 Assumes a current date of November 25, 1995, 10:32 a.m.:

select getdate()

Nov 25 1995 10:32AM

Example 2 Assumes a current date of November:

select datepart(month, getdate())

11

Example 3 Assumes a current date of November:

select datename(month, getdate())

November

Usage • getdate, a date function, returns the current system date and time.

• For more information about date functions, see “Date functions” on page
64.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute getdate.

See also Datatypes Date and time datatypes

Functions dateadd, datediff, datename, datepart

getutcdate

150 Adaptive Server Enterprise

getutcdate
Description Returns a date and time where the value is in Universal Coordinated Time

(UTC). getutcdate is calculated each time a row is inserted or selected.

Syntax insert t1 (c1, c2, c3) select c1, getutcdate(), getdate() from t2)

Usage Returns a date and time that has a value in Universal Coordinated Time (UTC).
getutcdate is calculated each time a row is inserted or selec

See also Functions biginttohex, convert

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 151

has_role
Description Returns information about whether the user has been granted the specified role.

Syntax has_role ("role_name"[, 0])

Parameters role_name
is the name of a system or user-defined role.

0
is an optional parameter that suppresses auditing.

Examples Example 1 Creates a procedure to check if the user is a System Administrator:

create procedure sa_check as
if (has_role("sa_role", 0) > 0)
begin

print "You are a System Administrator."
return(1)

end

Example 2 Checks that the user has been granted the System Security Officer
role:

select has_role("sso_role", 0)

Example 3 Checks that the user has been granted the Operator role:

select has_role("oper_role", 0)

Usage • has_role functions the same way proc_role does. Beginning with Adaptive
Server version 15.0, Sybase supports—and recommends—that you use
has_role instead of proc_role. You need not, hoever, convert all of your
existing uses of proc_role to has_role.

• has_role, a system function, checks whether an invoking user has been
granted, and has activated, the specified role.

• has_role returns 0 if the user has:

• Not been granted the specified role

• Not been granted a role which contains the specified role

• Been granted, but has not activated, the specified role

• has_role returns 1 if the invoking user has been granted, and has activated,
the specified role.

• has_role returns 2 if the invoking user has a currently active role, which
contains the specified role.

has_role

152 Adaptive Server Enterprise

• For general information about system functions, see “System functions”
on page 68.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute has_role.

See also Commands alter role, create role, drop role, grant, set, revoke

Functions mut_excl_roles, role_contain, role_id, role_name, show_role

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 153

hextobigint
Description Returns the bigint value equivalent of a hexadecimal string

Syntax hextobigint (hexadecimal_string)

Parameters hexadecimal_string
is the hexadecimal value to be converted to an big integer; must be a
character-type column, variable name, or a valid hexadecimal string, with or
without a “0x” prefix, enclosed in quotes.

Examples The following example converts the hexadecimal string 0x7fffffffffffffff to a
big integer.

1> select hextobigint("0x7fffffffffffffff")
2> go

9223372036854775807

Usage • hextobigint, a datatype conversion function, returns the
platform-independent integer equivalent of a hexadecimal string.

• Use the hextobigint function for platform-independent conversions of
hexadecimal data to integers. hextobigint accepts a valid hexadecimal
string, with or without a “0x” prefix, enclosed in quotes, or the name of a
character-type column or variable.

hextobigint returns the bigint equivalent of the hexadecimal string. The
function always returns the same bigint equivalent for a given hexadecimal
string, regardless of the platform on which it is executed.

See also Functions biginttohex, convert, inttohex, hextoint

hextoint

154 Adaptive Server Enterprise

hextoint
Description Returns the platform-independent integer equivalent of a hexadecimal string.

Syntax hextoint (hexadecimal_string)

Parameters hexadecimal_string
is the hexadecimal value to be converted to an integer; must be a
character-type column, variable name, or a valid hexadecimal string, with or
without a “0x” prefix, enclosed in quotes.

Examples Returns the integer equivalent of the hexadecimal string “0x00000100”. The
result is always 256, regardless of the platform on which it is executed:

select hextoint ("0x00000100")

Usage • hextoint, a datatype conversion function, returns the platform-independent
integer equivalent of a hexadecimal string.

• Use the hextoint function for platform-independent conversions of
hexadecimal data to integers. hextoint accepts a valid hexadecimal string,
with or without a “0x” prefix, enclosed in quotes, or the name of a
character-type column or variable.

hextoint returns the integer equivalent of the hexadecimal string. The
function always returns the same integer equivalent for a given
hexadecimal string, regardless of the platform on which it is executed.

• For more information about datatype conversion, see “Datatype
conversion functions” on page 55.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute hextoint.

See also Functions biginttohex, convert, inttohex

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 155

host_id
Description Returns the client computer’s operating system process ID for the current

Adaptive Server client.

Syntax host_id()

Parameters None.

Examples In this example, the name of the client computer is “ephemeris” and the process
ID on the computer “ephemeris” for the Adaptive Server client process is 2309:

select host_name(), host_id()
----------------------------- -----------------------
ephemeris 2309

The following is the process information, gathered using the UNIX ps
command, from the computer “ephemeris” showing that the client in this
example is “isql” and its process ID is 2309:

2309 pts/2 S 0:00 /work/as125/OCS-12_5/bin/isql

Usage • host_id, a system function, returns the host process ID of the client process
(not the server process).

• For general information about system functions, see “String functions” on
page 67.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute host_id.

See also Function host_name

host_name

156 Adaptive Server Enterprise

host_name
Description Returns the current host computer name of the client process.

Syntax host_name()

Parameters None.

Examples select host_name()

violet

Usage • host_name, a system function, returns the current host computer name of
the client process (not the server process).

• For general information about system functions, see “System functions”
on page 68.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute host_name.

See also Function host_id

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 157

identity_burn_max
Description Tracks the identity burn max value for a given table. This function returns only

the value; does not perform an update.

Syntax identity_burn_max(table_name)

Parameters table_name
is the name of the table selected.

Examples select identity_burn_max("t1")

t1

51

Usage identity_burn_max tracks the identity burn max value for a given table.

Permissions Only the table owner, System Administrator, or database administrator can
issue this command.

index_col

158 Adaptive Server Enterprise

index_col
Description Returns the name of the indexed column in the specified table or view, and can

be up to 255 bytes in length

Syntax index_col (object_name, index_id, key_# [, user_id])

Parameters object_name
is the name of a table or view. The name can be fully qualified (that is, it can
include the database and owner name). It must be enclosed in quotes.

index_id
is the number of object_name’s index. This number is the same as the value
of sysindexes.indid.

key_#
is a key in the index. This value is between 1 and sysindexes.keycnt for a
clustered index and between 1 and sysindexes.keycnt+1 for a nonclustered
index.

user_id
is the owner of object_name. If you do not specify user_id, it defaults to the
caller’s user ID.

Examples Finds the names of the keys in the clustered index on table t4:

declare @keycnt integer
select @keycnt = keycnt from sysindexes

where id = object_id("t4")
and indid = 1

while @keycnt > 0
begin

select index_col("t4", 1, @keycnt)
select @keycnt = @keycnt - 1

end

Usage • index_col, a system function, returns the name of the indexed column.

• index_col returns NULL if object_name is not a table or view name.

• For general information about system functions, see “String functions” on
page 67.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute index_col.

See also Function object_id

System procedure sp_helpindex

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 159

index_colorder
Description Returns the column order.

Syntax index_colorder (object_name, index_id, key_#
[, user_id])

Parameters object_name
is the name of a table or view. The name can be fully qualified (that is, it can
include the database and owner name). It must be enclosed in quotes.

index_id
is the number of object_name’s index. This number is the same as the value
of sysindexes.indid.

key_#
is a key in the index. Valid values are 1 and the number of keys in the index.
The number of keys is stored in sysindexes.keycnt.

user_id
is the owner of object_name. If you do not specify user_id, it defaults to the
caller’s user ID.

Examples Returns “DESC” because the salesind index on the sales table is in descending
order:

select name, index_colorder("sales", indid, 2)
from sysindexes
where id = object_id ("sales")
and indid > 0

name
------------------------- -------------------------
salesind DESC

Usage • index_colorder, a system function, returns “ASC” for columns in
ascending order or “DESC” for columns in descending order.

• index_colorder returns NULL if object_name is not a table name or if
key_# is not a valid key number.

• For general information about system functions, see “String functions” on
page 67.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute index_colorder.

inttohex

160 Adaptive Server Enterprise

inttohex
Description Returns the platform-independent hexadecimal equivalent of the specified

integer.

Syntax inttohex (integer_expression)

Parameters integer_expression
is the integer value to be converted to a hexadecimal string.

Examples select inttohex (10)

0000000A

Usage • inttohex, a datatype conversion function, returns the platform-independent
hexadecimal equivalent of an integer, without a “0x” prefix.

• Use the inttohex function for platform-independent conversions of integers
to hexadecimal strings. inttohex accepts any expression that evaluates to an
integer. It always returns the same hexadecimal equivalent for a given
expression, regardless of the platform on which it is executed.

• For more information about datatype conversion, see “Datatype
conversion functions” on page 55.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute inttohex.

See also Functions convert, hextobigint, hextoint

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 161

is_quiesced
Description Indicates whether a database is in quiesce database mode. is_quiesced returns

1 if the database is quiesced and 0 if it is not.

Syntax is_quiesced(dbid)

Parameters dbid
is the database ID of the database.

Examples Example 1 Uses the test database, which has a database ID of 4, and which is
not quiesced:

1> select is_quiesced(4)
2> go

0

(1 row affected)

Example 2 Uses the test database after running quiesce database to suspend
activity:

1> quiesce database tst hold test
2> go
1> select is_quiesced(4)
2> go

1

(1 row affected)

Example 3 Uses the test database after resuming activity using quiesce
database:

1> quiesce database tst release
2> go
1> select is_quiesced(4)
2> go

0

(1 row affected)

Example 4 Executes a select statement with is_quiesced using an invalid
database ID:

1>select is_quiesced(-5)

is_quiesced

162 Adaptive Server Enterprise

2> go

NULL

(1 row affected)

Usage • is_quiesced has no default values. You see an error if you execute
is_quiesced without specifying a database.

• is_quiesced returns NULL if you specify a database ID that does not exist.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute is_quiesced.

See also Command quiesce database

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 163

is_sec_service_on
Description Returns 1 if the security service is active and 0 if it is not.

Syntax is_sec_service_on(security_service_nm)

Parameters security_service_nm
is the name of the security service.

Examples select is_sec_service_on("unifiedlogin")

Usage • Use is_sec_service_on to determine whether a given security service is
active during the session.

• To find valid names of security services, execute:

select * from syssecmechs

The result might look something like:

sec_mech_name available_service
------------- --------------------
dce unifiedlogin
dce mutualauth
dce delegation
dce integrity
dce confidentiality
dce detectreplay
dce detectseq

The available_service column displays the security services that are
supported by Adaptive Server.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute is_sec_service_on.

See also Function show_sec_services

isnull

164 Adaptive Server Enterprise

isnull
Description Substitutes the value specified in expression2 when expression1 evaluates to

NULL.

Syntax isnull(expression1, expression2)

Parameters expression
is a column name, variable, constant expression, or a combination of any of
these that evaluates to a single value. It can be of any datatype, including
unichar. expression is usually a column name. If expression is a character
constant, it must be enclosed in quotes.

Examples Returns all rows from the titles table, replacing null values in price with 0:

select isnull(price,0)
from titles

Usage • isnull, a system function, substitutes the value specified in expression2
when expression1 evaluates to NULL. For general information about
system functions, see “String functions” on page 67.

• The datatypes of the expressions must convert implicitly, or you must use
the convert function.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute isnull.

See also Function convert

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 165

lct_admin
Description Manages the last-chance threshold, returns the current value of the last-chance

threshold (LCT), and aborts transactions in a transaction log that has reached
its LCT.

Syntax lct_admin({{"lastchance" | "logfull" | "reserved_for_rollbacks"},
database_id
|"reserve", {log_pages | 0 }
| "abort", process-id [, database-id]})

Parameters lastchance
creates a LCT in the specified database.

logfull
returns 1 if the LCT has been crossed in the specified database and 0 if it has
not.

reserved_for_rollbacks
determines the number of pages a database currently reserved for rollbacks.

database_id
specifies the database.

reserve
obtains either the current value of the LCT or the number of log pages
required for dumping a transaction log of a specified size.

log_pages
is the number of pages for which to determine a LCT.

0
returns the current value of the LCT. The size of the LCT in a database with
separate log and data segments does not vary dynamically. It has a fixed
value, based on the size of the transaction log. The LCT varies dynamically
in a database with mixed log and data segments.

abort
aborts transactions in a database where the transaction log has reached its
last-chance threshold. Only transactions in log-suspend mode can be
aborted.

logsegment_freepages
describes the free space available for the log segment. This is the total value
of free space, not per-disk.

lct_admin

166 Adaptive Server Enterprise

process-id
The ID (spid) of a process in log-suspend mode. A process is placed in
log-suspend mode when it has open transactions in a transaction log that has
reached its last-chance threshold (LCT).

database-id
the ID of a database with a transaction log that has reached its LCT. If
process-id is 0, all open transactions in the specified database are
terminated.

Examples Example 1 Creates the log segment last-chance threshold for the database with
dbid 1. It returns the number of pages at which the new threshold resides. If
there was a previous last-chance threshold, it is replaced:

select lct_admin("lastchance", 1)

Example 2 Returns 1 if the last-chance threshold for the database with dbid of
6 has been crossed, and 0 if it has not:

select lct_admin("logfull", 6)

Example 3 Calculates and returns the number of log pages that would be
required to successfully dump the transaction log in a log containing 64 pages:

select lct_admin("reserve", 64)

16

Example 4 Returns the current last-chance threshold of the transaction log in
the database from which the command was issued:

select lct_admin("reserve", 0)

Example 5 Aborts transactions belonging to process 83. The process must be
in log-suspend mode. Only transactions in a transaction log that has reached its
LCT are terminated:

select lct_admin("abort", 83)

Example 6 Aborts all open transactions in the database with dbid of 5. This
form awakens any processes that may be suspended at the log segment
last-chance threshold:

select lct_admin("abort", 0, 5)

Example 7 Determines the number of pages reserved for rollbacks in the
pubs2 database, which has a dbid of 5:

select lct_admin("reserved_for_rollbacks", 5, 0)

Example 8 Describes the free space available for a database with a dbid of 4:

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 167

select lct_admin("logsegment_freepages", 4)

Usage • lct_admin, a system function, manages the log segment’s last-chance
threshold. For general information about system functions, see “System
functions” on page 68.

• If lct_admin(“lastchance”, dbid) returns zero, the log is not on a separate
segment in this database, so no last-chance threshold exists.

• Whenever you create a database with a separate log segment, the server
creates a default last chance threshold that defaults to calling
sp_thresholdaction. This happens even if a procedure called
sp_thresholdaction does not exist on the server at all.

If your log crosses the last-chance threshold, Adaptive Server suspends
activity, tries to call sp_thresholdaction, finds it does not exist, generates
an error, then leaves processes suspended until the log can be truncated.

• To terminate the oldest open transaction in a transaction log that has
reached its LCT, enter the ID of the process that initiated the transaction.

• To terminate all open transactions in a transaction log that has reached its
LCT, enter 0 as the process-id, and specify a database ID in the
database-id parameter.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Only a System Administrator can execute lct_admin abort. Any user can
execute the other lct_admin options.

See also Document System Administration Guide.

Command dump transaction

Function curunreservedpgs

System procedure sp_thresholdaction

left

168 Adaptive Server Enterprise

left
Description Returns a specified number of characters on the left end of a character string.

Syntax left(character_expression, integer_expression)

Parameters character_expression
is the character string from which the characters on the left are selected.

integer_expression
is the positive integer that specifies the number of characters returned. An
error is returned if integer_expression is negative.

Examples Example 1 Returns the five leftmost characters of each book title.

use pubs
select left(title, 5)
from titles
order by title_id

The B
Cooki
You C
.....
Sushi

(18 row(s) affected)

Example 2 Returns the two leftmost characters of the character string
"abcdef".

select left("abcdef", 2)

ab
(1 row(s) affected)

Usage • character_expression can be of any datatype (except text or image) that can
be implicitly converted to varchar or nvarchar. character_expression can be
a constant, variable, or a column name. You can explicitly convert
character_expression using convert.

• left is equivalent to substring(character_expression, 1, integer_expression).
For more information on this function, see substring on page 238.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute left.

See also Datatypes varchar, nvarchar

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 169

Functions len, str_replace, substring

len

170 Adaptive Server Enterprise

len
Description Returns the number of characters, not the number of bytes, of a specified string

expression, excluding trailing blanks.

Syntax len(string_expression)

Parameters string_expression
is the string expression to be evaluated.

Examples Returns the characters

select len(notes) from titles
where title_id = "PC9999"

39

Usage This function is the equivalent of char_length(string_expression).

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute len.

See also Datatypes char, nchar, varchar, nvarchar

Functions char_length, left, str_replace

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 171

license_enabled
Description Returns 1 if a feature’s license is enabled, 0 if the license is not enabled, or

NULL if you specify an invalid license name.

Syntax license_enabled("ase_server" | "ase_ha" | "ase_dtm" | "ase_java" |
"ase_asm")

Parameters ase_server
specifies the license for Adaptive Server.

ase_ha
specifies the license for the Adaptive Server high availability feature.

ase_dtm
specifies the license for Adaptive Server distributed transaction
management features.

ase_java
specifies the license for the Java in Adaptive Server feature.

ase_asm
specifies the license for Adaptive Server advanced security mechanism.

Examples Indicates that the license for the Adaptive Server distributed transaction
management feature is enabled:

select license_enabled("ase_dtm")

1

Usage • For information about installing license keys for Adaptive Server features,
see your installation guide.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute license_enabled.

See also Documents Installation guide for your platform

System procedure sp_configure

list_appcontext

172 Adaptive Server Enterprise

list_appcontext
Description Lists all the attributes of all the contexts in the current session. list_appcontext

is a built-in function provided by the Application Context Facility (ACF).

Syntax list_appcontext (["context_name"])

Parameters context_name
is an optional argument that names all the application context attributes in
the session.

Examples Example 1 Shows the results when a user with appropriate permissions
attempts to list the application contexts:

select list_appcontext ([context_name])

Context Name: (CONTEXT1)
Attribute Name: (ATTR1) Value: (VALUE2)
Context Name: (CONTEXT2)
Attribute Name: (ATTR1) Value: (VALUE1)

Example 2 Shows the results when a user without appropriate permissions
attempts to list the application contexts:

select list_appcontext()

Select permission denied on built-in list_appcontext,
database DBID

-1

Usage • This function returns 0 for success.

• Since built-in functions do not return multiple result sets, the client
application receives list_appcontext returns as messages.

Standards ANSI SQL – Compliance level: Transact-SQL extension

Permissions Permissions depend on the user profile and the application profile, and are
stored by the ACF.

See also For more information on the ACF, see “Row-level access control” in Chapter
11, “Managing User Permissions” of the System Administration Guide.

Functions get_appcontext, list_appcontext, rm_appcontext, set_appcontext

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 173

lockscheme
Description Returns the locking scheme of the specified object as a string.

Syntax lockscheme(object_name)

lockscheme(object_id [, db_id])

Parameters object_name
is the name of the object that the locking scheme returns. object_name can
also be a fully qualified name.

db_id
the ID of the database specified by object_id.

object_id
the ID of the object that the locking scheme returns.

Examples Example 1 Selects the locking scheme for the titles table in the current
database:

select lockscheme("titles")

Example 2 Selects the locking scheme for object_id 224000798 (in this case,
the titles table) from database ID 4 (the pubs2 database):

select lockscheme(224000798, 4)

Example 3 Returns the locking scheme for the titles table (object_name in this
example is fully qualified):

select lockscheme(tempdb.ownerjoe.titles)

Usage • lockscheme returns varchar(11) and allows NULLs.

• lockscheme defaults to the current database if you:

• Do not provide a fully qualified object_name.

• Do not provide a db_id.

• Provide a null for db_id.

• If the specified object is not a table, lockscheme returns the string “not a
table.”

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute lockscheme.

log

174 Adaptive Server Enterprise

log
Description Returns the natural logarithm of the specified number.

Syntax log(approx_numeric)

Parameters approx_numeric
is any approximate numeric (float, real, or double precision) column name,
variable, or constant expression.

Examples select log(20)

2.995732

Usage • log, a mathematical function, returns the natural logarithm of the specified
value.

• For general information about mathematical functions, see “Mathematical
functions” on page 65.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute log.

See also Functions log10, power

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 175

log10
Description Returns the base 10 logarithm of the specified number.

Syntax log10(approx_numeric)

Parameters approx_numeric
is any approximate numeric (float, real, or double precision) column name,
variable, or constant expression.

Examples select log10(20)

1.301030

Usage • log10, a mathematical function, returns the base 10 logarithm of the
specified value.

• For general information about mathematical functions, see “Mathematical
functions” on page 65.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute log10.

See also Functions log, power

lower

176 Adaptive Server Enterprise

lower
Description Returns the lowercase equivalent of the specified expression.

Syntax lower(char_expr | uchar_expr)

Parameters char_expr
is a character-type column name, variable, or constant expression of char,
varchar, nchar, or nvarchar type.

uchar_expr
is a character-type column name, variable, or constant expression of unichar
or univarchar type.

Examples select lower(city) from publishers

boston
washington
berkeley

Usage • lower, a string function, converts uppercase to lowercase, returning a
character value.

• lower is the inverse of upper.

• If char_expr or uchar_expr is NULL, returns NULL.

• For general information about string functions, see “String functions” on
page 67.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute lower.

See also Function upper

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 177

ltrim
Description Returns the specified expression, trimmed of leading blanks.

Syntax ltrim(char_expr | uchar_expr)

Parameters char_expr
is a character-type column name, variable, or constant expression of char,
varchar, nchar, or nvarchar type.

uchar_expr
is a character-type column name, variable, or constant expression of unichar
or univarchar type.

Examples select ltrim(" 123")

123

Usage • ltrim, a string function, removes leading blanks from the character
expression. Only values equivalent to the space character in the current
character set are removed.

• If char_expr or uchar_expr is NULL, returns NULL.

• For Unicode expressions, returns the lowercase Unicode equivalent of the
specified expression. Characters in the expression that have no lowercase
equivalent are left unmodified.

• For general information about string functions, see “String functions” on
page 67.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute ltrim.

See also Function rtrim

max

178 Adaptive Server Enterprise

max
Description Returns the highest value in an expression.

Syntax max(expression)

Parameters expression
is a column name, constant, function, any combination of column names,
constants, and functions connected by arithmetic or bitwise operators, or a
subquery.

Examples Example 1 Returns the maximum value in the discount column of the
salesdetail table as a new column:

select max(discount) from salesdetail

 62.200000

Example 2 Returns the maximum value in the discount column of the
salesdetail table as a new row:

select discount from salesdetail
compute max(discount)

Usage • max, an aggregate function, finds the maximum value in a column or
expression. For general information about aggregate functions, see
“Aggregate functions” on page 49.

• You can use max with exact and approximate numeric, character, and
datetime columns; you cannot use it with bit columns. With character
columns, max finds the highest value in the collating sequence. max
ignores null values. max implicitly converts char datatypes to varchar, and
unichar datatypes to univarchar, stripping all trailing blanks.

• unichar data is collated according to the default Unicode sort order.

• Adaptive Server goes directly to the end of the index to find the last row
for max when there is an index on the aggregated column, unless:

• The expression not a column.

• The column is not the first column of an index.

• There is another aggregate in the query.

• There is a group by or where clause.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute max.

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 179

See also Commands compute clause, group by and having clauses, select, where
clause

Functions avg, min

min

180 Adaptive Server Enterprise

min
Description Returns the lowest value in a column.

Syntax min(expression)

Parameters expression
is a column name, constant, function, any combination of column names,
constants, and functions connected by arithmetic or bitwise operators, or a
subquery. With aggregates, an expression is usually a column name. For
more information, see “Expressions” on page 275.

Examples select min(price) from titles
where type = "psychology"

7.00

Usage • min, an aggregate function, finds the minimum value in a column.

• For general information about aggregate functions, see “Aggregate
functions” on page 49.

• You can use min with numeric, character, time, and datetime columns; you
cannot use it with bit columns. With character columns, min finds the
lowest value in the sort sequence. min implicitly converts char datatypes to
varchar, and unichar datatypes to univarchar, stripping all trailing blanks.
min ignores null values. distinct is not available, since it is not meaningful
with min.

• unichar data is collated according to the default Unicode sort order.

• Adaptive Server goes directly to the first qualifying row for min when
there is an index on the aggregated column, unless:

• The expression is not a column.

• The column is not the first column of an index.

• There is another aggregate in the query.

• There is a group by clause.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute min.

See also Commands compute clause, group by and having clauses, select, where
clause

Functions avg, max

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 181

month
Description Returns an integer that represents the month in the datepart of a specified date.

Syntax month(date_expression)

Parameters date_expression
is an expression of type datetime, smalldatetime, date, or a character string in
a datetime format.

Examples Returns the integer 11:

day("11/02/03")

11

Usage month(date_expression) is equivalent to datepart(mm, date_expression).

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute month.

See also Datatypes datetime, smalldatetime, date

Functions datepart, day, year

mut_excl_roles

182 Adaptive Server Enterprise

mut_excl_roles
Description Returns information about the mutual exclusivity between two roles.

Syntax mut_excl_roles (role1, role2 [membership | activation])

Parameters role1
is one user-defined role in a mutually exclusive relationship.

role2
is the other user-defined role in a mutually exclusive relationship.

level
is the level (membership or activation) at which the specified roles are
exclusive.

Examples Shows that the admin and supervisor roles are mutually exclusive:

alter role admin add exclusive membership supervisor
select
mut_excl_roles("admin", "supervisor", "membership")

1

Usage • mut_excl_roles, a system function, returns information about the mutual
exclusivity between two roles. If the System Security Officer defines role1
as mutually exclusive with role2 or a role directly contained by role2,
mut_excl_roles returns 1. If the roles are not mutually exclusive,
mut_excl_roles returns 0.

• For general information about system functions, see “System functions”
on page 68.

Standards ANSI SQL – Compliance level: Transact-SQL extension

Permissions Any user can execute mut_excl_roles.

See also Commands alter role, create role, drop role, grant, set, revoke

Functions proc_role, role_contain, role_id, role_name

System procedures sp_activeroles, sp_displayroles, sp_role

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 183

newid
Description Generates human-readable, globally unique IDs (GUIDs) in two different

formats, based on arguments you provide. The length of the human-readable
format of the GUID value is either 32 bytes (with no dashes) or 36 bytes (with
dashes).

Syntax newid([optionflag])

Parameters option flag
• 0, or no value – the GUID generated is human-readable (varchar), but

does not include dashes. This argument, which is the default, is useful
for converting values into varbinary.

• -1 – the GUID generated is human-readable (varchar) and includes
dashes.

• -0x0 – returns the GUID as a varbinary.

• Any other value for newid returns NULL.

Examples Example 1 Creates a table with varchar columns 32 bytes long, then uses newid
with no arguments with the insert statement:

create table t (UUID varchar(32))
go
insert into t values (newid())
insert into t values (newid())
go
select * from t

UUID

f81d4fae7dec11d0a76500a0c91e6bf6
7cd5b7769df75cefe040800208254639

Example 2 Produces a GUID that includes dashes:

select newid(1)

b59462af-a55b-469d-a79f-1d6c3c1e19e3

Example 3 Returns a new GUID of type varbinary for every row that is
returned from the query:

select newid(0x0) from sysobjects

Example 4 Uses newid with the varbinary datatype:

sp_addtype binguid, "varbinary(16)"
create default binguid_dflt

newid

184 Adaptive Server Enterprise

as
newid(0x0)
sp_bindefault "binguid_dflt","binguid"
create table T1 (empname char(60), empid int, emp_guid
binguid)
insert T1 (empname, empid) values ("John Doe", 1)
insert T1 (empname, empid(values ("Jane Doe", 2)

Usage • newid generates two values for the globally unique ID (GUID) based on
arguments you pass to newid. The default argument generates GUIDs
without dashes. By default newid returns new values for every filtered row.

• You can use newid in defaults, rules, and triggers, similar to other
functions.

• Make sure the length of the varchar column is at least 32 bytes for the
GUID format without dashes, and at least 36 bytes for the GUID format
with dashes. The column length is truncated if it is not declared with these
minimum required lengths. Truncation increases the probability of
duplicate values.

• An argument of zero is equivalent to the default.

• Because GUIDs are globally unique, they can be transported across
domains without generating duplicates.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute newid.

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 185

next_identity
Description Retrieves the next identity value that is available for the next insert.

Syntax next_identity(table_name)

Parameters table_name
identifies the table being used.

Examples Updates the value of c2 to 10. The next available value is 11.

select next_identity (“t1”)
t1

11

Usage • next_identity returns the next value to be inserted by this task. In some
cases, if multiple users are inserting values into the same table, the actual
value reported as the next value to be inserted is different from the actual
value inserted if another user performs an intermediate insert.

• next_identity returns a varchar chararcter to support any precision of the
identity column. If the table is a proxy table, a non-user table, or the table
does not have identity property, NULL is returned.

Permissions Only the table owner, System Administrator, or database administrator can
issue this command.

nullif

186 Adaptive Server Enterprise

nullif
Description Supports conditional SQL expressions; can be used anywhere a value

expression can be used; alternative for a case expression.

Syntax nullif(expression, expression)

Parameters nullif
compares the values of the two expressions. If the first expression equals the
second expression, nullif returns NULL. If the first expression does not equal
the second expression, nullif returns the first expression.

expression
is a column name, a constant, a function, a subquery, or any combination of
column names, constants, and functions connected by arithmetic or bitwise
operators. For more information about expressions, see “Expressions” on
page 275.

Examples Example 1 Selects the titles and type from the titles table. If the book type is
UNDECIDED, nullif returns a NULL value:

select title,
nullif(type, "UNDECIDED")

from titles

Example 2 This is an alternative way of writing Example 1:

select title,
case

when type = "UNDECIDED" then NULL
else type

end
from titles

Usage • nullif expression alternate for a case expression.

• nullif expression simplifies standard SQL expressions by allowing you to
express a search condition as a simple comparison instead of using a
when...then construct.

• You can use nullif expressions anywhere an expression can be used in SQL.

• At least one result of the case expression must return a non-null value. For
example the following results in an error message:

select price, coalesce (NULL, NULL, NULL)
from titles
All result expressions in a CASE expression must not be NULL.

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 187

• If your query produces a variety of datatypes, the datatype of a case
expression result is determined by datatype hierarchy, as described in
“Datatypes of mixed-mode expressions” on page 7. If you specify two
datatypes that Adaptive Server cannot implicitly convert (for example,
char and int), the query fails.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Anyone can execute nullif.

See also Commands case, coalesce, select, if...else, where clause

object_id

188 Adaptive Server Enterprise

object_id
Description Returns the object ID of the specified object.

Syntax object_id(object_name)

Parameters object_name
is the name of a database object, such as a table, view, procedure, trigger,
default, or rule. The name can be fully qualified (that is, it can include the
database and owner name). Enclose the object_name in quotes.

Examples Example 1

select object_id("titles")

208003772

Example 2

select object_id("master..sysobjects")

1

Usage • object_id, a system function, returns the object’s ID. Object IDs are stored
in the id column of sysobjects.

• For general information about system functions, see “System functions”
on page 68.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute object_id.

See also Functions col_name, db_id, object_name

System procedure sp_help

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 189

object_name
Description Returns the name of the object with the object ID you specify; can be up to 255

bytes in length.

Syntax object_name(object_id[, database_id])

Parameters object_id
is the object ID of a database object, such as a table, view, procedure, trigger,
default, or rule. Object IDs are stored in the id column of sysobjects.

database_id
is the ID for a database if the object is not in the current database. Database
IDs are stored in the db_id column of sysdatabases.

Examples Example 1

select object_name(208003772)

titles

Example 2

select object_name(1, 1)

sysobjects

Usage • object_name, a system function, returns the object’s name.

• For general information about system functions, see “System functions”
on page 68.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute object_name.

See also Functions col_name, db_id, object_id

System procedure sp_help

pagesize

190 Adaptive Server Enterprise

pagesize
Description Returns the page size, in bytes, for the specified object.

Syntax pagesize(object_name [, index_name])

pagesize(object_id [,db_id [, index_id]])

Parameters object_name
is the object name of the page size of this function returns.

index_name
indicates the index name of the page size you want returned.

object_id
is the object ID of the page size this function returns.

db_id
is the database ID of the object.

index_id
is the index ID of the object you want returned.

Examples Example 1 Selects the page size for the title_id index in the current database.

select pagesize("title", "title_id")

Example 2 The following returns the page size of the data layer for the object
with object_id 1234 and the database with a db_id of 2 (the previous example
defaults to the current database):

select pagesize(1234,2, null)
select pagesize(1234,2)
select pagesize(1234)

Example 3 The following all default to the current database:

select pagesize(1234, null, 2)
select pagesize(1234)

Example 4 Selects the page size for the titles table (object_id 224000798) from
the pubs2 database (db_id 4):

select pagesize(224000798, 4)

Example 5 Returns the page size for the nonclustered index’s pages table
mytable, residing in the current database:

pagesize(object_id(‘mytable’), NULL, 2)

Example 6 Returns the page size for object titles_clustindex from the current
database:

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 191

select pagesize("titles", "titles_clustindex")

Usage • pagesize defaults to the data layer if you do not provide an index name or
index_id (for example, select pagesize("t1")) if you use the word
“null” as a parameter (for example, select pagesize("t1", null).

• If the specified object is not an object requiring physical data storage for
pages (for example, if you provide the name of a view), pagesize returns 0.

• If the specified object does not exist, pagesize returns NULL.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute pagesize.

partition_id

192 Adaptive Server Enterprise

partition_id
Description Returns the partition ID of the specified data or index partition name.

Syntax partition_id(table_name, partition_name [,index_name])

Parameters table_name
is the name for a table.

partition_name
is the partition name for a table partition or an index partition.

index_name
is the name of the index of interest.

Examples Example 1 Returns the partition ID corresponding to the partition name
testtable_ptn1 and index id 0 (the base table). The testtable must exist in the
current database:

select partition_id("testtable", "testtable_ptn1")

Example 2 Returns the partition ID corresponding to the partition name
testtable_clust_ptn1 for the index name clust_index1. The testtable must exist
in the current database:

select partition_id("testtable", "testtable_clust_ptn1", "clust_index1")

Example 3 This is the same as the previous example, except that the user need
not be in the same database as where the target table is located:

select partition_id("mydb.dbo.testtable", "testtable_clust_ptn1",
"clust_index1")

Usage You must enclose table_name, partition_name and index_name in quotes.

See also Functions data_pages, object_id, partition_name, reserved_pages,
row_count, used_pages

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 193

partition_name
Description The explicit name of a new partition, partition_name returns the partition name

of the specified data or index partition id.

Syntax partition_name(indid, ptnid [, dbid])

Parameters indid
is the index ID for the target partition.

ptnid
is the ID of the target partition.

dbid
is the database ID for the target partition. If you do not specify this
parameter, the target partition is assumed to be in the current database.

Examples Example 1 Returns the partition name for the given partition ID belonging to
the base table (with an index ID of 0). The lookup is done in the current
database because it does not specify a database ID:

select partition_name(0, 1111111111)

Example 2 Returns the partition name for the given partition ID belonging to
the clustered index (index ID of 1 is specified) in the testdb database.

select partition_name(1, 1212121212, db_id("testdb")

Usage • If the search does not find the target partition, the return is NULL.

See also Functions data_pages, object_id, partition_id, reserved_pages, row_count

patindex

194 Adaptive Server Enterprise

patindex
Description Returns the starting position of the first occurrence of a specified pattern.

Syntax patindex("%pattern%", char_expr|uchar_expr [, using
{bytes | characters | chars}])

Parameters pattern
is a character expression of the char or varchar datatype that may include any
of the pattern-match wildcard characters supported by Adaptive Server. The
% wildcard character must precede and follow pattern (except when
searching for first or last characters). For a description of the wildcard
characters, see “Pattern matching with wildcard characters” on page 293.

char_expr
is a character-type column name, variable, or constant expression of char,
varchar, nchar, or nvarchar type.

uchar_expr
is a character-type column name, variable, or constant expression of unichar,
or univarchar type.

using
specifies a format for the starting position.

bytes
returns the offset in bytes.

chars or characters
returns the offset in characters (the default).

Examples Example 1 Selects the author ID and the starting character position of the word
“circus” in the copy column:

select au_id, patindex("%circus%", copy)
from blurbs

au_id
----------- -----------
486-29-1786 0
648-92-1872 0
998-72-3567 38
899-46-2035 31
672-71-3249 0
409-56-7008 0

Example 2

select au_id, patindex("%circus%", copy,
using chars)

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 195

from blurbs

Example 3 Finds all the rows in sysobjects that start with “sys” with a fourth
character that is “a”, “b”, “c”, or “d”:

select name
from sysobjects
where patindex("sys[a-d]%", name) > 0

name

sysalternates
sysattributes
syscharsets
syscolumns
syscomments
sysconfigures
sysconstraints
syscurconfigs
sysdatabases
sysdepends
sysdevices

Usage • patindex, a string function, returns an integer representing the starting
position of the first occurrence of pattern in the specified character
expression, or a 0 if pattern is not found.

• You can use patindex on all character data, including text and image data.

• For unichar, univarchar, and unitext, patindex returns the offset in Unicode
characters. The pattern string is implicitly converted to UTF-16 before
comparison, and the comparison is based on the default unicode sort order
configuration. For example, this is what is returned if a unitext column
contains row value U+0041U+0042U+d800U+dc00U+0043:

select patindex("%C%", ut) from unitable

4

• By default, patindex returns the offset in characters; to return the offset in
bytes (multibyte character strings), specify using bytes.

• Include percent signs before and after pattern. To look for pattern as the
first characters in a column, omit the preceding %. To look for pattern as
the last characters in a column, omit the trailing %.

• If char_expr or uchar_expr is NULL, patindex returns 0.

patindex

196 Adaptive Server Enterprise

• If you give a varchar expression as one parameter and a unichar expression
as the other, the varchar expression is implicitly converted to unichar (with
possible truncation).

• For general information about string functions, see “String functions” on
page 67.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute patindex.

See also Functions charindex, substring

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 197

pi
Description Returns the constant value 3.1415926535897936.

Syntax pi()

Parameters None

Examples select pi()

3.141593

Usage • pi, a mathematical function, returns the constant value of
3.1415926535897931.

• For general information about mathematical functions, see “Mathematical
functions” on page 65.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute pi.

See also Functions degrees, radians

power

198 Adaptive Server Enterprise

power
Description Returns the value that results from raising the specified number to a given

power.

Syntax power(value, power)

Parameters value
is a numeric value.

power
is an exact numeric, approximate numeric, or money value.

Examples select power(2, 3)

8

Usage • power, a mathematical function, returns the value of value raised to the
power power. Results are of the same type as value.

In expressions of type numeric or decimal, this function returns
precision:38, scale 18.

• For general information about mathematical functions, see “Mathematical
functions” on page 65.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute power.

See also Functions exp, log, log10

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 199

proc_role
Description Returns information about whether the user has been granted the specified role.

Note Sybase supports—and recommends—that you use has_role instead of
proc_role. You need not, however, convert your existing uses of proc_role to
has_role.

Syntax proc_role ("role_name")

Parameters role_name
is the name of a system or user-defined role.

Examples Example 1 Creates a procedure to check if the user is a System Administrator:

create procedure sa_check as
if (proc_role("sa_role") > 0)
begin

print "You are a System Administrator."
return(1)

end

Example 2 Checks that the user has been granted the System Security Officer
role:

select proc_role("sso_role")

Example 3 Checks that the user has been granted the Operator role:

select proc_role("oper_role")

Usage • Using proc_role with a procedure that starts with “sp_” returns an error.

• proc_role, a system function, checks whether an invoking user has been
granted, and has activated, the specified role.

• proc_role returns 0 if the user has:

• Not been granted the specified role

• Not been granted a role which contains the specified role

• Been granted, but has not activated, the specified role

• proc_role returns 1 if the invoking user has been granted, and has activated,
the specified role.

• proc_role returns 2 if the invoking user has a currently active role, which
contains the specified role.

proc_role

200 Adaptive Server Enterprise

• For general information about system functions, see “System functions”
on page 68.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute proc_role.

See also Commands alter role, create role, drop role, grant, set, revoke

Functions mut_excl_roles, role_contain, role_id, role_name, show_role

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 201

radians
Description Returns the size, in radians, of an angle with the specified number of degrees.

Syntax radians(numeric)

Parameters numeric
is any exact numeric (numeric, dec, decimal, tinyint, smallint, or int),
approximate numeric (float, real, or double precision), or money column,
variable, constant expression, or a combination of these.

Examples select radians(2578)

44

Usage • radians, a mathematical function, converts degrees to radians. Results are
of the same type as numeric.

To express numeric or decimal dataypes, this function returns precision:
38, scale 18.

When money datatypes are used, internal conversion to float may cause
loss of precision.

• For general information about mathematical functions, see “Mathematical
functions” on page 65.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute radians.

See also Function degrees

rand

202 Adaptive Server Enterprise

rand
Description Returns a random value between 0 and 1, which is generated using the

specified seed value.

Syntax rand([integer])

Parameters integer
is any integer (tinyint, smallint, or int) column name, variable, constant
expression, or a combination of these.

Examples Example 1

select rand()

0.395740

Example 2

declare @seed int
select @seed=100
select rand(@seed)

0.000783

Usage • rand, a mathematical function, returns a random float value between 0 and
1, using the optional integer as a seed value.

• The rand function uses the output of a 32-bit pseudorandom integer
generator. The integer is divided by the maximum 32-bit integer to give a
double value between 0.0 and 1.0. The rand function is seeded randomly
at server start-up, so getting the same sequence of random numbers is
unlikely, unless the user first initializes this function with a constant seed
value. The rand function is a global resource. Multiple users calling the
rand function progress along a single stream of pseudorandom values. If a
repeatable series of random numbers is needed, the user must assure that
the function is seeded with the same value initially and that no other user
calls rand while the repeatable sequence is desired.

• For general information about mathematical functions, see “Mathematical
functions” on page 65.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute rand.

See also Datatypes Approximate numeric datatypes

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 203

replicate
Description Returns a string consisting of the specified expression repeated a given number

of times.

Syntax replicate (char_expr | uchar_expr, integer_expr)

Parameters char_expr
is a character-type column name, variable, or constant expression of char,
varchar, nchar, or nvarchar type.

uchar_expr
is a character-type column name, variable, or constant expression of unichar
or univarchar type.

integer_expr
is any integer (tinyint, smallint, or int) column name, variable, or constant
expression.

Examples select replicate("abcd", 3)

abcdabcdabcd

Usage • replicate, a string function, returns a string with the same datatype as
char_expr or uchar_expr containing the same expression repeated the
specified number of times or as many times as fits into 16K, whichever is
less.

• If char_expr or uchar_expr is NULL, returns a single NULL.

• For general information about string functions, see “String functions” on
page 67.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute replicate.

See also Function stuff

reserved_pages

204 Adaptive Server Enterprise

reserved_pages
Description Reports the number of pages reserved to a table, index or a specific partition.

The result includes pages used for internal structures.

This function replaces the old reserved_pgs function used in Adaptive Server
versions earlier than 15.0.

Syntax reserved_pages(dbid, object_id [, indid [, ptnid]])

Parameters dbid
is the database ID of the database where the target object resides.

object_id
is an object ID for a table.

indid
is the index ID of target index.

ptnid
is the partition ID of target partition.

Examples Example 1 Returns the number of pages reserved by the object with a object
ID of 31000114 in the specified database (including any indexes):

select reserved_pages(5, 31000114)

Example 2 Returns the number of pages reserved by the object in the data
layer, regardless of whether or not a clustered index exists:

select reserved_pages(5, 31000114, 0)

Example 3 Returns the number of pages reserved by the object in the index
layer for a clustered index. This does not include the pages used by the data
layer:

select reserved_pages(5, 31000114, 1)

Example 4 Returns the number of pages reserved by the object in the data
layer of the specific partition, which in this case is 2323242432:

select reserved_pages(5, 31000114, 0, 2323242432)

Usage In the case of an apl table, if a clustered index exists on the table, then passing
in an in did of 0 will report the reserved data pages, and passing an indid of 1
will report the reserved index pages. All erroneous conditions will result in a
value of zero being returned.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute reserved_pgs.

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 205

See also Command update statistics

Function data_pages, reserved_pages, row_count, used_pages

reverse

206 Adaptive Server Enterprise

reverse
Description Returns the specified string with characters listed in reverse order.

Syntax reverse(expression | uchar_expr)

Parameters expression
is a character or binary-type column name, variable, or constant expression
of char, varchar, nchar, nvarchar, binary, or varbinary type.

uchar_expr
is a character or binary-type column name, variable, or constant expression
of unichar or univarchar type.

Examples Example 1

select reverse("abcd")

dcba

Example 2

select reverse(0x12345000)

0x00503412

Usage • reverse, a string function, returns the reverse of expression.

• If expression is NULL, reverse returns NULL.

• Surrogate pairs are treated as indivisible and are not reversed.

• For general information about string functions, see “String functions” on
page 67.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute reverse.

See also Functions lower, upper

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 207

right
Description The rightmost part of the expression with the specified number of characters.

Syntax right(expression, integer_expr)

Parameters expression
is a character or binary-type column name, variable, or constant expression
of char, varchar, nchar, unichar, nvarchar, univarchar, binary, or varbinary type.

integer_expr
is any integer (tinyint, smallint, or int) column name, variable, or constant
expression.

Examples Example 1

select right("abcde", 3)

cde

Example 2

select right("abcde", 2)

--
de

Example 3

select right("abcde", 6)

abcde

Example 4

select right(0x12345000, 3)

0x345000

Example 5

select right(0x12345000, 2)

0x5000

Example 6

select right(0x12345000, 6)

0x12345000

right

208 Adaptive Server Enterprise

Usage • right, a string function, returns the specified number of characters from the
rightmost part of the character or binary expression.

• If the specified rightmost part begins with the second surrogate of a pair
(the low surrogate), the return value starts with the next full character.
Therefore, one less character is returned.

• The return value has the same datatype as the character or binary
expression.

• If expression is NULL, right returns NULL.

• For general information about string functions, see “String functions” on
page 67.

Standards ANSI SQL – Compliance level: Transact-SQL extension

Permissions Any user can execute right.

See also Functions rtrim, substring

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 209

rm_appcontext
Description Removes a specific application context, or all application contexts.

rm_appcontext is a function provided by the Application Context Facility
(ACF).

Syntax rm_appcontext (“context_name”, “attribute_name”)

Parameters context_name
is a row specifying an application context name. It is saved as datatype
char(30).

attribute_name
is a row specifying an application context attribute name. It is saved as
datatype char(30).

Examples Example 1 Removes an application context by specifying some or all
attributes:

select rm_appcontext("CONTEXT1", "*")

0

select rm_appcontext("*", "*")

0

select rm_appcontext("NON_EXISTING_CTX","ATTR")

-1

Example 2 Shows the result when a user without appropriate permissions
attempts to remove an application context:

select rm_appcontext("CONTEXT1","ATTR2")

-1

Usage • This function always returns 0 for success.

• All the arguments for this function are required.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Permissions depend on the user profile and the application profile, which are
stored by ACF.

See also For more information on the ACF see “Row-level access control” in Chapter
11, “Managing User Permissions” of the System Administration Guide.

Functions get_appcontext, list_appcontext, set_appcontext

role_contain

210 Adaptive Server Enterprise

role_contain
Description Returns 1 if role2 contains role1.

Syntax role_contain("role1", "role2")

Parameters role1
is the name of a system or user-defined role.

role2
is the name of another system or user-defined role.

Examples Example 1

select role_contain("intern_role", "doctor_role")

1

Example 2

select role_contain("specialist_role", "intern_role")

0

Usage • role_contain, a system function, returns 1 if role1 is contained by role2.

• For more information about system functions, see “System functions” on
page 68.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute role_contain.

See also Documents For more information about contained roles and role hierarchies,
see the System Administration Guide.

Functions mut_excl_roles, proc_role, role_id, role_name

Commands alter role

System procedures sp_activeroles, sp_displayroles, sp_role

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 211

role_id
Description Returns the system role ID of the name you specify.

Syntax role_id("role_name")

Parameters role_name
is the name of a system or user-defined role. Role names and role IDs are
stored in the syssrvroles system table.

Examples Example 1 Returns the system role ID of sa_role:

select role_id("sa_role")

0

Example 2 Returns the system role ID of the “intern_role”:

select role_id("intern_role")

6

Usage • role_id, a system function, returns the system role ID (srid). System role
IDs are stored in the srid column of the syssrvroles system table.

• If the role_name is not a valid role in the system, Adaptive Server returns
NULL.

• For more information about system functions, see “System functions” on
page 68.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute role_id.

See also Documents For more information about roles, see the System Administration
Guide.

Functions mut_excl_roles,proc_role,role_contain, role_name

role_name

212 Adaptive Server Enterprise

role_name
Description Returns the name of a system role ID you specify.

Syntax role_name(role_id)

Parameters role_id
is the system role ID (srid) of the role. Role names are stored in syssrvroles.

Examples select role_name(01)

sso_role

Usage • role_name, a system function, returns the role name.

• For more information about system functions, see “System functions” on
page 68.

Standards ANSI SQL – Compliance level: Transact-SQL extension

Permissions Any user can execute role_name.

See also Functions mut_excl_roles, proc_role, role_contain, role_id

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 213

round
Description Returns the value of the specified number, rounded to a specified number of

decimal places.

Syntax round(number, decimal_places)

Parameters number
is any exact numeric (numeric, dec, decimal, tinyint, smallint, int, or bigint),
approximate numeric (float, real, or double precision), or money column,
variable, constant expression, or a combination of these.

decimal_places
is the number of decimal places to round to.

Examples Example 1

select round(123.4545, 2)

123.4500

Example 2

select round(123.45, -2)

100.00

Example 3

select round(1.2345E2, 2)

123.450000

Example 4

select round(1.2345E2, -2)

100.000000

Usage • round, a mathematical function, rounds the number so that it has
decimal_places significant digits.

• A positive value for decimal_places determines the number of significant
digits to the right of the decimal point; a negative value for decimal_places
determines the number of significant digits to the left of the decimal point.

• Results are of the same type as number and, for numeric and decimal
expressions, have an internal precision equal to the precision of the first
argument plus 1 and a scale equal to that of number.

round

214 Adaptive Server Enterprise

• round always returns a value. If decimal_places is negative and exceeds the
number of significant digits specified for number, Adaptive Server returns
0. (This is expressed in the form 0.00, where the number of zeros to the
right of the decimal point is equal to the scale of numeric.) For example,
the following returns a value of 0.00:

select round(55.55, -3)

• For general information about mathematical functions, see “Mathematical
functions” on page 65.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute round.

See also Functions abs, ceiling, floor, sign, str

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 215

row_count
Description Returns an estimate of the number of rows in the specified table.

Syntax row_count(dbid, object_id [,ptnid])

Parameters dbid
the database ID where target object resides

object_id
object ID of table

ptnid
partition ID of interest

Examples Example 1 Returns an estimate of the number of rows in the given object:

select row_count(5, 31000114)

Example 2 Returns an estimate of the number of rows in the specified partition
(with partition ID of 2323242432) of the object with object IDof 31000114:

select row_count(5, 31000114, 2323242432)

Usage All erroneous conditions will return in a value of zero being returned.

Standards ANSI SQL – Compliance level: Transact-SQL extension

Permissions Any user can execute row_count.

See also Functions reserved_pages, used_pages

rtrim

216 Adaptive Server Enterprise

rtrim
Description Returns the specified expression, trimmed of trailing blanks.

Syntax rtrim(char_expr | uchar_expr)

Parameters char_expr
is a character-type column name, variable, or constant expression of char,
varchar, nchar, or nvarchar type.

uchar_expr
is a character-type column name, variable, or constant expression of unichar
or univarchar type.

Examples select rtrim("abcd ")

abcd

Usage • rtrim, a string function, removes trailing blanks.

• For Unicode, a blank is defined as the Unicode value U+0020.

• If char_expr or uchar_expr is NULL, returns NULL.

• Only values equivalent to the space character in the current character set
are removed.

• For general information about string functions, see “String functions” on
page 67.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute rtrim.

See also Function ltrim

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 217

set_appcontext
Description Sets an application context name, attribute name, and attribute value for a user

session, defined by the attributes of a specified application. set_appcontext is a
built-in function that the Application Context Facility (ACF) provides.

Syntax set_appcontext (“context_name, “attribute_name”, “attribute_value”)

Parameters context_name
is a row that specifies an application context name. It is saved as the datatype
char(30).

attribute_name
is a row that specifies an application context attribute name. It is saved as
the datatype char(30).

attribute_value
is a row that specifies and application attribute value. It is saved as the
datatype char(30).

Examples Example 1 Creates an application context called CONTEXT1, with an
attribute ATTR1 that has the value VALUE1.

select set_appcontext ("CONTEXT1", "ATTR1", "VALUE1")

0

Attempting to override the existing application context created causes the
following:

select set_appcontext("CONTEXT1", "ATTR1", "VALUE1")

-1

Example 2 Shows set_appcontext including a datatype conversion in the
value.

declare@numericvarchar varchar(25)
select @numericvar = "20"
select set_appcontext ("CONTEXT1", "ATTR2",
convert(char(20), @numericvar))

0

Example 3 Shows the result when a user without appropriate permissions
attempts to set the application context.

select set_appcontext("CONTEXT1", "ATTR2", "VALUE1")

set_appcontext

218 Adaptive Server Enterprise

-1

Usage • set_appcontext returns 0 for success and -1 for failure.

• If you set values that already exist in the current session, set_appcontext
returns -1.

• This function cannot override the values of an existing application context.
To assign new values to a context, remove the context and re-create it
using new values.

• set_appcontext saves attributes as char datatypes. If you are creating an
access rule that must compare the attribute value to another datatype, the
rule should convert the char data to the appropriate datatype.

• All the arguments for this function are required.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Permissions depend on the user profile and the application profile, stored by
ACF.

See also For more information on the ACF see “Row-level access control” in Chapter
11, “Managing User Permissions” of the System Administration Guide.

Functions get_appcontext, list_appcontext, rm_appcontext

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 219

show_role
Description Shows the login’s currently active system-defined roles.

Syntax show_role()

Parameters None.

Examples Example 1

select show_role()

sa_role sso_role oper_role replication_role

Example 2

if charindex("sa_role", show_role()) >0
begin

print "You have sa_role"
end

Usage • show_role, a system function, returns the login’s current active
system-defined roles, if any (sa_role, sso_role, oper_role, or
replication_role). If the login has no roles, show_role returns NULL.

• When a Database Owner invokes show_role after using setuser, show_role
displays the active roles of the Database Owner, not the user impersonated
with setuser.

• For general information about system functions, see “System functions”
on page 68.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute show_role.

See also Commands alter role, create role, drop role, grant, set, revoke

Functions proc_role, role_contain

System procedures sp_activeroles, sp_displayroles, sp_role

show_sec_services

220 Adaptive Server Enterprise

show_sec_services
Description Lists the security services that are active for the session.

Syntax show_sec_services()

Parameters None.

Examples Shows that the user’s current session is encrypting data and performing replay
detection checks:

select show_sec_services()

encryption, replay_detection

Usage • Use show_sec_services to list the security services that are active during
the session.

• If no security services are active, show_sec_services returns NULL.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute show_sec_services.

See also Functions is_sec_service_on

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 221

sign
Description Returns the sign (1 for positive, 0, or -1 for negative) of the specified value.

Syntax sign(numeric)

Parameters numeric
is any exact numeric (numeric, dec, decimal, tinyint, smallint, int, or bigint),
approximate numeric (float, real, or double precision), or money column,
variable, constant expression, or a combination of these.

Examples Example 1

select sign(-123)

-1

Example 2

select sign(0)

0

Example 3

select sign(123)

 1

Usage • sign, a mathematical function, returns the positive (1), zero (0), or negative
(-1).

• Results are of the same type, and have the same precision and scale, as the
numeric expression.

• For general information about mathematical functions, see “Mathematical
functions” on page 65.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute sign.

See also Functions abs, ceiling, floor, round

sin

222 Adaptive Server Enterprise

sin
Description Returns the sine of the specified angle (in radians).

Syntax sin(approx_numeric)

Parameters approx_numeric
is any approximate numeric (float, real, or double precision) column name,
variable, or constant expression.

Examples select sin(45)

0.850904

Usage • sin, a mathematical function, returns the sine of the specified angle
(measured in radians).

• For general information about mathematical functions, see “Mathematical
functions” on page 65.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute sin.

See also Functions cos, degrees, radians

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 223

sortkey
Description Generates values that can be used to order results based on collation behavior,

which allows you to work with character collation behaviors beyond the
default set of Latin character-based dictionary sort orders and case- or
accent-sensitivity.

Syntax sortkey (char_expression | uchar_expression) [, {collation_name |
collation_ID}])

Parameters char_expression
is a character-type column name, variable, or constant expression of char,
varchar, nchar, or nvarchar type.

uchar_expression
is a character-type column name, variable, or constant expression of unichar
or univarchar type.

collation_name
is a quoted string or a character variable that specifies the collation to use.
Table 2-10 on page 226 shows the valid values.

collation_ID
is an integer constant or a variable that specifies the collation to use. Table 2-
10 on page 226 shows the valid values.

Examples Example 1 Shows sorting by European language dicitionary order:

select * from cust_table where cust_name like "TI%" order by
(sortkey(cust_name, "dict")

Example 2 Shows sorting by simplified Chinese phonetic order:

select *from cust_table where cust name like "TI%" order by
(sortkey(cust-name, "gbpinyin")

Example 3 Shows sorting by European language dictionary order using the
in-line option:

select *from cust_table where cust_name like "TI%" order by cust_french_sort

Example 4 Shows sorting by Simplified Chinese phonetic order using
preexisting keys:

select * from cust_table where cust_name like "TI%" order by
cust_chinese_sort.

sortkey

224 Adaptive Server Enterprise

Usage • sortkey, a system function, generates values that can be used to order
results based on collation behavior. This allows you to work with character
collation behaviors beyond the default set of Latin-character-based
dictionary sort orders and case- or accent-sensitivity. The return value is a
varbinary datatype value that contains coded collation information for the
input string that is returned from the sortkey function.

For example, you can store the values returned by sortkey in a column with
the source character string. Ro retrieve the character data in the desired
order, include in the select statement an order by clause on the columns
that contain the results of running sortkey.

sortkey guarantees that the values it returns for a given set of collation
criteria work for the binary comparisons that are performed on varbinary
datatypes.

• sortkey can generate up to sixbytes of collation information for each input
character. Therefore, the result from using sortkey may exceed the length
limit of the varbinary datatype. If this happens, the result is truncated to fit.
Since this limit is dependent on the logical page size of your server,
truncation removes result bytes for each input character until the result
string is less than the following for DOL and APL tables:

Table 2-9: Maximum row and column length—APL and DOL tables

If this occurs, Adaptive Server issues a warning message, but the query or
transaction that contained the sortkey function continues to run.

Locking scheme Page size Maximum row length Maximum column length

APL tables 2K (2048 bytes) 1962 1960 bytes

4K (4096 bytes) 4010 4008 bytes

8K (8192 bytes) 8106 8104 bytes

16K (16384 bytes) 16298 16296 bytes

DOL tables 2K (2048 bytes) 1964 1958 bytes

4K (4096 bytes) 4012 4006 bytes

8K (8192 bytes) 8108 8102 bytes

16K (16384 bytes) 16300 16294 bytes
if table does not include any
variable length columns

16K (16384 bytes) 16300
(subject to a max start
offset of varlen = 8191)

8191-6-2 = 8183 bytes
if table includes at least on
variable length column.*

* This size includes six bytes for the row overhead and two bytes for the row length field.

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 225

• char_expression or uchar_expression must be composed of characters that
are encoded in the server’s default character set.

• char_expression or uchar_expression can be an empty string. If it is an
empty string, sortkey returns a zero-length varbinary value, and stores a
blank for the empty string.

An empty string has a different collation value than an NULL string from
a database column.

• If char_expression or uchar_expression is NULL, sortkey returns a null
value.

• If a unicode expression has no specified sort order, the unicode default sort
order is used.

• If you do not specify a value for collation_name or collation_ID, sortkey
assumes binary collation.

• The binary values generated from the sortkey function can change from
one major version to another major version of Adaptive Server, such as
version 12.0 to 12.5, version 12.9.2 to 12.0, and so on. If you are upgrading
to the current version of Adaptive Server, regenerate keys and repopulate
the shadow columns before any binary comparison takes place.

Note Upgrades from version 12.5 to 12.5.0.1 do not require this step, and
Adaptive Server does not generate any errors or warning messages if you
do not regenerate the keys. Although a query involving the shadow
columns should work fine, the comparison result may differ from the
pre-upgrade server.

Collation tables

There are two types of collation tables you can use to perform multilingual
sorting:

1 A “built-in” collation table created by the sortkey function. This function
exists in versions of Adaptive Server later than 11.5.1. You can use either
the collation name or the collation ID to specify a built-in table.

2 An external collation table that uses the Unilib library sorting functions.
You must use the collation name to specify an external table. These files
are located in $SYBASE/collate/unicode.

sortkey

226 Adaptive Server Enterprise

Both of these methods work equally well, but a “built-in” table is tied to a
Adaptive Server database, while an external table is not. If you use an
Adaptive Server database, a built-in table provides the best performance.
Both methods can handle any mix of English, European, and Asian
languages.

There are two ways to use sortkey:

1 In-line – this uses sortkey as part of the order by clause and is useful for
retrofitting an existing application and minimizing the changes. However,
this method generates sort keys on-the-fly, and therefore does not provide
optimum performance on large data sets of moe than 1000 records.

2 Pre-existing keys – this method calls sortkey whenever a new record
requiring multilingual sorting is added to the table, such as a new customer
name. Shadow columns (binary or varbinary type) must be set up in the
database, preferably in the same table, one for each desired sort order such
as French, Chinese, and so on. When a query requires output to be sorted,
the order by clause uses one of the shadow columns. This method produces
the best performance since keys are already generated and stored, and are
quickly compared only on the basis of their binary values.

You can view a list of available collation rules. Print the list by executing either
sp_helpsort, or by querying and selecting the name, id, and description from
syscharsets (type is between 2003 and 2999).

• Table 2-10 lists the valid values for collation_name and collation_ID.

Table 2-10: Collation names and IDs

Description Collation name Collation ID

Deafult Unicode multilingual default 20

Thai dictionary order thaidict 21

ISO14651 standard iso14651 22

UTF-16 ordering – matches UTF-8 binary ordering utf8bin 24

CP 850 Alternative – no accent altnoacc 39

CP 850 Alternative – lowercase first altdict 45

CP 850 Western European – no case preference altnocsp 46

CP 850 Scandinavian – dictionary ordering scandict 47

CP 850 Scandinavian – case-insensitive with preference scannocp 48

GB Pinyin gbpinyin n/a

Binary sort binary 50

Latin-1 English, French, German dictionary dict 51

Latin-1 English, French, German no case nocase 52

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 227

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute sortkey.

See also Function compare

Latin-1 English, French, German no case, preference nocasep 53

Latin-1 English, French, German no accent noaccent 54

Latin-1 Spanish dictionary espdict 55

Latin-1 Spanish no case espnocs 56

Latin-1 Spanish no accent espnoac 57

ISO 8859-5 Russian dictionary rusdict 58

ISO 8859-5 Russian no case rusnocs 59

ISO 8859-5 Cyrillic dictionary cyrdict 63

ISO 8859-5 Cyrillic no case cyrnocs 64

ISO 8859-7 Greek dictionary elldict 65

ISO 8859-2 Hungarian dictionary hundict 69

ISO 8859-2 Hungarian no accents hunnoac 70

ISO 8859-2 Hungarian no case hunnocs 71

ISO 8859-9 Turkish dictionary turdict 72

ISO 8859-9 Turkish no accents turknoac 73

ISO 8859-9 Turkish no case turknocs 74

CP932 binary ordering cp932bin 129

Chinese phonetic ordering dynix 130

GB2312 binary ordering gb2312bn 137

Common Cyrillic dictionary cyrdict 140

Turkish dictionary turdict 155

EUCKSC binary ordering euckscbn 161

Chinese phonetic ordering gbpinyin 163

Russian dictionary ordering rusdict 165

SJIS binary ordering sjisbin 179

EUCJIS binary ordering eucjisbn 192

BIG5 binary ordering big5bin 194

Shift-JIS binary order sjisbin 259

Description Collation name Collation ID

soundex

228 Adaptive Server Enterprise

soundex
Description Returns a four-character code representing the way an expression sounds.

Syntax soundex(char_expr | uchar_expr)

Parameters char_expr
is a character-type column name, variable, or constant expression of char,
varchar, nchar, or nvarchar type.

uchar_expr
is a character-type column name, variable, or constant expression of unichar
or univarchar type.

Examples select soundex ("smith"), soundex ("smythe")
----- -----
S530 S530

Usage • soundex, a string function, returns a four-character soundex code for
character strings that are composed of a contiguous sequence of valid
single- or double-byte roman letters.

• The soundex function converts an alphabetic string to a four-digit code for
use in locating similar-sounding words or names. All vowels are ignored
unless they constitute the first letter of the string.

• If char_expr or uchar_expr is NULL, returns NULL.

• For general information about string functions, see “String functions” on
page 67.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute soundex.

See also Function difference

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 229

space
Description Returns a string consisting of the specified number of single-byte spaces.

Syntax space(integer_expr)

Parameters integer_expr
is any integer (tinyint, smallint, or int) column name, variable, or constant
expression.

Examples select "aaa", space(4), "bbb"

--- ---- ---
aaa bbb

Usage • space, a string function, returns a string with the indicated number of
single-byte spaces.

• For general information about string functions, see “String functions” on
page 67.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute space.

See also Functions isnull, rtrim

square

230 Adaptive Server Enterprise

square
Description Returns the square of a specified value expressed as a float.

Syntax square(numeric_expression)

Parameters numeric_expression
is a numeric expression of type float.

Examples Example 1 Returns the square from an integer column:

select square(total_sales)from titles

16769025.00000
15023376.00000
350513284.00000
...
16769025.00000
(18 row(s) affected)

Example 2 Returns the square from a money column:

select square(price) from titles

399.600100
142.802500
8.940100
NULL
...
224.700100
(18 row(s) affected)

Usage This function is the equivalent of power(numeric_expression,2), but it returns
type float rather than int.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute square.

See also Function power

Datatypes exact_numeric, approximate_numeric, money, float

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 231

sqrt
Description Returns the square root of the specified number.

Syntax sqrt(approx_numeric)

Parameters approx_numeric
is any approximate numeric (float, real, or double precision) column name,
variable, or constant expression that evaluates to a positive number.

Examples select sqrt(4)

2.000000

Usage • sqrt, a mathematical function, returns the square root of the specified
value.

• If you attempt to select the square root of a negative number, Adaptive
Server returns the following error message:

Domain error occurred.

• For general information about mathematical functions, see “Mathematical
functions” on page 65.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute sqrt.

See also Function power

str

232 Adaptive Server Enterprise

str
Description Returns the character equivalent of the specified number.

Syntax str(approx_numeric [, length [, decimal]])

Parameters approx_numeric
is any approximate numeric (float, real, or double precision) column name,
variable, or constant expression.

length
sets the number of characters to be returned (including the decimal point, all
digits to the right and left of the decimal point, and blanks). The default is
10.

decimal
sets the number of decimal digits to be returned. The default is 0.

Examples Example 1

select str(1234.7, 4)

1235

Example 2

select str(-12345, 6)

-12345

Example 3

select str(123.45, 5, 2)

123.5

Usage • str, a string function, returns a character representation of the floating point
number. For general information about string functions, see “String
functions” on page 67.

• length and decimal are optional. If given, they must be nonnegative. str
rounds the decimal portion of the number so that the results fit within the
specified length. The length should be long enough to accommodate the
decimal point and, if negative, the number’s sign. The decimal portion of
the result is rounded to fit within the specified length. If the integer portion
of the number does not fit within the length, however, str returns a row of
asterisks of the specified length. For example:

select str(123.456, 2, 4)

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 233

--
**

A short approx_numeric is right-justified in the specified length, and a
long approx_numeric is truncated to the specified number of decimal
places.

• If approx_numeric is NULL, returns NULL.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute str.

See also Functions abs, ceiling, floor, round, sign

str_replace

234 Adaptive Server Enterprise

str_replace
Description Replaces any instances of the second string expression (string_expression2)

that occur within the first string expression (string_expression1) with a third
expression (string_expression3).

Syntax replace("string_expression1", "string_expression2", "string_expression3")

Parameters string_expression1
is the source string, or the string expression to be searched, expressed as
char, varchar, unichar, univarchar, varbinary, or binary datatype.

string_expression2
is the pattern string, or the string expression to find within the first
expression (string_expression1). string_expression2 is expressed as char,
varchar, unichar, univarchar, varbinary, or binary datatype.

string_expression3
is the replacement string expression, expressed as char, varchar, unichar,
univarchar, binary, or varbinary datatype.

Examples Example 1 Replaces the string def within the string cdefghi with yyy.

replace("cdefghi","def","yyy")

cyyyghi
(1 row(s) affected)

Example 2 Replaces all spaces with "toyota".

select str_replace("chevy, ford, mercedes",
"","toyota")

chevy,toyotaford,toyotamercedes
(1 row(s) affected)

Note Adaptive Server converts an empty string constant to a string of one
space automatically, to distinguish the string from NULL values.

Example 3 Returns “abcghijklm”:

select str_replace("abcdefghijklm", "def", NULL)

abcghijklm
(1 row affected)

Usage • Returns varchar data if string_expression (1, 2, or 3) is char or varchar.

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 235

• Returns univarchar data if string_expression (1, 2, or 3) is unichar or
univarchar.

• Returns varbinary data if string_expression (1, 2, or 3) is binary or varbinary.

• All arguments must share the same datatype.

• If any of the three arguments is NULL, the function returns null.

str_replace accepts NULL in the third parameter and treats it as an attempt
to replace string_expression2 with NULL, effectively turning str_replace
into a “string cut” operation.

For example, the following returns “abcghijklm”:

str_replace("abcdefghijklm", "def", NULL)

• The result length may vary, depending upon what is known about the
argument values when the expression is compiled. If all arguments are
variables with known constant values, Adaptive Server calculates the
result length as:

result_length = ((s/p)*(r-p)+s)
where
s = length of source string
p = length of pattern string
r = length of replacement string
if (r-p) <= 0, result length = s

• If the source string (string_expression1) is a column, and
string_expression2 and string_expression3 are constant values known at
compile time, Adaptive Server calculates the result length using the
formula above.

• If Adaptive Server cannot calculate the result length because the argument
values are unknown when the expression is compiled, the result length
used is 255, unless traceflag 244 is on. In that case, the result length is
16384.

• result_len never exceeds 16384.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute str_replace.

See also Datatypes char, varchar, binary, varbinary, unichar, univarchar

Function length

stuff

236 Adaptive Server Enterprise

stuff
Description Returns the string formed by deleting a specified number of characters from

one string and replacing them with another string.

Syntax stuff(char_expr1 | uchar_expr1, start, length, char_expr2 | uchar_expr2)

Parameters char_expr1
is a character-type column name, variable, or constant expression of char,
varchar, nchar, or nvarchar type.

uchar_expr1
is a character-type column name, variable, or constant expression of unichar
or univarchar type.

start
specifies the character position at which to begin deleting characters.

length
specifies the number of characters to delete.

char_expr2
is another character-type column name, variable, or constant expression of
char, varchar, nchar, or nvarchar type.

uchar_expr2
is another character-type column name, variable, or constant expression of
unichar or univarchar type.

Examples Example 1

select stuff("abc", 2, 3, "xyz")

axyz

Example 2

select stuff("abcdef", 2, 3, null)

go

aef

Example 3

select stuff("abcdef", 2, 3, "")

a ef

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 237

Usage • stuff, a string function, deletes length characters from char_expr1 or
uchar_expr1 at start, then inserts char_expr2 or uchar_expr2 into
char_expr1 or uchar_expr2 at start. For general information about string
functions, see “String functions” on page 67.

• If the start position or the length is negative, a NULL string is returned. If
the start position is longer than expr1, a NULL string is returned. If the
length to be deleted is longer than expr1, expr1 is deleted through its last
character (see Example 1).

• If the start position falls in the middle of a surrogate pair, start is adjusted
to be one less. If the start length position falls in the middle of a surrogate
pair, length is adjusted to be one less.

• To use stuff to delete a character, replace expr2 with NULL rather than with
empty quotation marks. Using ‘‘ ‘’ to specify a null character replaces it
with a space (see Eexamples 2 and 3).

• If char_expr1 or uchar_expr1 is NULL, stuff returns NULL. If char_expr1
or or uchar_expr1 is a string value and char_expr2 or uchar_expr2 is NULL,
stuff replaces the deleted characters with nothing.

• If you give a varchar expression as one parameter and a unichar expression
as the other, the varchar expression is implicitly converted to unichar (with
possible truncation).

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute stuff.

See also Functions replicate, substring

substring

238 Adaptive Server Enterprise

substring
Description Returns the string formed by extracting the specified number of characters

from another string.

Syntax substring(expression, start, length)

Parameters expression
is a binary or character column name, variable, or constant expression. Can
be char, nchar, unichar, varchar, univarchar, or nvarchar data, binary, or
varbinary.

start
specifies the character position at which the substring begins.

length
specifies the number of characters in the substring.

Examples Example 1 Displays the last name and first initial of each author, for example,
“Bennet A.”:

select au_lname, substring(au_fname, 1, 1)
from authors

Example 2 Converts the author’s last name to uppercase, then displays the first
three characters:

select substring(upper(au_lname), 1, 3)
from authors

Example 3 Concatenates pub_id and title_id, then displays the first six
characters of the resulting string:

select substring((pub_id + title_id), 1, 6)
from titles

Example 4 Extracts the lower four digits from a binary field, where each
position represents two binary digits:

select substring(xactid,5,2)
from syslogs

Usage • substring, a string function, returns part of a character or binary string. For
general information about string functions, see “String functions” on page
67.

• If substring’s second argument is NULL, the result is NULL. If substring’s
first or third argument is NULL, the result is blank..

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 239

• If the start position from the beginning of uchar_expr1 falls in the middle
of a surrogate pair, start is adjusted to one less. If the start length position
from the beginning of uchar_expr1 falls in the middle of a surrogate pair,
length is adjusted to one less.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute substring.

See also Functions charindex, patindex, stuff

sum

240 Adaptive Server Enterprise

sum
Description Returns the total of the values.

Syntax sum([all | distinct] expression)

Parameters all
applies sum to all values. all is the default.

distinct
eliminates duplicate values before sum is applied. distinct is optional.

expression
is a column name, constant, function, any combination of column names,
constants, and functions connected by arithmetic or bitwise operators, or a
subquery. With aggregates, an expression is usually a column name. For
more information, see “Expressions” on page 275.

Examples Example 1 Calculates the average advance and the sum of total sales for all
business books. Each of these aggregate functions produces a single summary
value for all of the retrieved rows:

select avg(advance), sum(total_sales)
from titles
where type = "business"

Example 2 Used with a group by clause, the aggregate functions produce
single values for each group, rather than for the entire table. This statement
produces summary values for each type of book:

select type, avg(advance), sum(total_sales)
from titles
group by type

Example 3 Groups the titles table by publishers, and includes only those
groups of publishers who have paid more than $25,000 in total advances and
whose books average more than $15 in price:

select pub_id, sum(advance), avg(price)
from titles
group by pub_id
having sum(advance) > $25000 and avg(price) > $15

Usage • sum, an aggregate function, finds the sum of all the values in a column.
sum can only be used on numeric (integer, floating point, or money)
datatypes. Null values are ignored in calculating sums.

• For general information about aggregate functions, see “Aggregate
functions” on page 49.

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 241

• When you sum integer data, Adaptive Server treats the result as an int
value, even if the datatype of the column is smallint or tinyint.When you
sum bigint data, Adaptive Server treats the result as a bigint.To avoid
overflow errors in DB-Library programs, declare all variables for results
of averages or sums appropriately.

• You cannot use sum with the binary datatypes.

• This function defines only numeric types; use with Unicode expressions
generates an error.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute sum.

See also Commands compute clause, group by and having clauses, select, where
clause

Functions count, max, min

suser_id

242 Adaptive Server Enterprise

suser_id
Description Returns the server user’s ID number from the syslogins table.

Syntax suser_id([server_user_name])

Parameters server_user_name
is an Adaptive Server login name.

Examples Example 1

select suser_id()

1

Example 2

select suser_id("margaret")

5

Usage • suser_id, a system function, returns the server user’s ID number from
syslogins. For general information about system functions, see “System
functions” on page 68.

• To find the user’s ID in a specific database from the sysusers table, use the
user_id system function.

• If no server_user_name is supplied, suser_id returns the server ID of the
current user.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute suser_id.

See also Functions suser_name, user_id

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 243

suser_name
Description Returns the name of the current server user or the user whose server ID is

specified.

Syntax suser_name([server_user_id])

Parameters server_user_id
is an Adaptive Server user ID.

Examples Example 1

select suser_name()

sa

Example 2

select suser_name(4)

margaret

Usage • suser_name, a system function, returns the server user’s name. Server user
IDs are stored in syslogins. If no server_user_id is supplied, suser_name
returns the name of the current user.

• For general information about system functions, see “System functions”
on page 68.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute suser_name.

See also Functions suser_id, user_name

syb_quit

244 Adaptive Server Enterprise

syb_quit
Description Terminates the connection.

Syntax syb_quit()

Examples Terminates the connection in which the function is executed and returns an
error message.

select syb_quit()

CT-LIBRARY error:

ct_results(): network packet layer:
internal net library error: Net-Library operation
terminated due to disconnect

Usage You can use syb_quit to terminate a script if the isql preprocessor command exit
causes an error.

Permissions Any user can execute syb_quit.

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 245

syb_sendmsg
Description UNIX only Sends a message to a User Datagram Protocol (UDP) port.

Syntax syb_sendmsg ip_address, port_number, message

Parameters ip_address
is the IP address of the machine where the UDP application is running.

port_number
is the port number of the UDP port.

message
is the message to send. It can be up to 255 characters in length.

Examples Example 1 Sends the message “Hello” to port 3456 at IP address 120.10.20.5:

select syb_sendmsg("120.10.20.5", 3456, "Hello")

Example 2 Reads the IP address and port number from a user table, and uses
a variable for the message to be sent:

declare @msg varchar(255)
select @msg = "Message to send"
select syb_sendmsg (ip_address, portnum, @msg)
from sendports
where username = user_name()

Usage • To enable the use of UDP messaging, a System Security Officer must set
the configuration parameter allow sendmsg to 1.

• No security checks are performed with syb_sendmsg. Sybase strongly
recommends that you do not use syb_sendmsg to send sensitive
information across the network. By enabling this functionality, the user
accepts any security problems that result from its use.

• For a sample C program that creates a UDP port, see sp_sendmsg.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute syb_sendmsg.

See also System procedure sp_sendmsg

tan

246 Adaptive Server Enterprise

tan
Description Returns the tangent of the specified angle (in radians).

Syntax tan(angle)

Parameters angle
is the size of the angle in radians, expressed as a column name, variable, or
expression of type float, real, double precision, or any datatype that can be
implicitly converted to one of these types.

Examples select tan(60)

0.320040

Usage • tan, a mathematical function, returns the tangent of the specified angle
(measured in radians).

• For general information about mathematical functions, see “Mathematical
functions” on page 65.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute tan.

See also Functions atan, atn2, degrees, radians

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 247

tempdb_id
Description Reports the temporary database to which a given session is assigned. The input

of the tempdb_id function is a server process ID, and its output is the temporary
database to which the process is assigned. If you do not provide a server
process, tempdb_id reports the dbid of the temporary database assigned to the
current process.

Syntax tempdb_id()

Examples Finds all the server processes that are assigned to a given temporary database:

select spid from master..sysprocesses
where tempdb_id(spid) = db_id("tempdatabase")

Usage select tempdb_id() gives the same result as select @@tempdbid.

See also Commands select

textptr

248 Adaptive Server Enterprise

textptr
Description Returns a pointer to the first page of a text, image, or unitext column.

Syntax textptr(column_name)

Parameters column_name
is the name of a text column.

Examples Example 1 Uses the textptr function to locate the text column, copy, associated
with au_id 486-29-1786 in the author’s blurbs table. The text pointer is placed
in local variable @val and supplied as a parameter to the readtext command,
which returns 5 bytes, starting at the second byte (offset of 1):

declare @val binary(16)
select @val = textptr(copy) from blurbs
where au_id = "486-29-1786"
readtext blurbs.copy @val 1 5

Example 2 Selects the title_id column and the 16-byte text pointer of the copy
column from the blurbs table:

select au_id, textptr(copy) from blurbs

Usage • textptr, a text and image function, returns the text pointer value, a 16-byte
varbinary value.

• If a text, unitext, or image column has not been initialized by a non-null
insert or by any update statement, textptr returns a NULL pointer. Use
textvalid to check whether a text pointer exists. You cannot use writetext or
readtext without a valid text pointer.

• For general information about text and image functions, see “Text and
image functions” on page 69.

Note Trailing f in varbinary values are truncated when the values are
stored in tables. If you are storing text pointer values in a table, use binary
as the datatype for the column.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute textptr.

See also Datatypes text, image, and unitext datatypes

Function textvalid

Commands insert, update, readtext, writetext

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 249

textvalid
Description Returns 1 if the pointer to the specified text or unitext column is valid; 0 if it is

not.

Syntax textvalid("table_name.column_name", textpointer)

Parameters table_name.column_name
is the name of a table and its text column.

textpointer
is a text pointer value.

Examples Reports whether a valid text pointer exists for each value in the blurb column
of the texttest table:

select textvalid ("texttest.blurb", textptr(blurb))
from texttest

Usage • textvalid, a text and image function, checks that a given text pointer is
valid. Returns 1 if the pointer is valid, or 0 if it is not.

• The identifier for a text or an image column must include the table name.

• For general information about text and image functions, see “Text and
image functions” on page 69.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute textvalid.

See also Datatypes text, image, and unitext datatypes

Function textptr

to_unichar

250 Adaptive Server Enterprise

to_unichar
Description Returns a unichar expression having the value of the integer expression.

Syntax to_unichar (integer_expr)

Parameters integer_expr
is any integer (tinyint, smallint, or int) column name, variable, or constant
expression.

Usage • to_unichar, a string function, converts a Unicode integer value to a
Unicode character value.

• If a unichar expression refers to only half of a surrogate pair, an error
message appears and the operation is aborted.

• If a integer_expr is NULL, to_unichar returns NULL.

• For general information about string functions, see “String functions” on
page 67.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute to_unichar.

See also Datatypes text, image, and unitext datatypes

Function char

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 251

tran_dumptable_status
Description Returns a true/false indication of whether dump transaction is allowed.

Syntax tran_dumpable_status("database_name")

Parameters database_name
is the name of the target database.

Examples Checks to see if the pubs2 database can be dumped:

1> select tran_dumpable_status("pubs2")
2> go

106

(1 row affected)

In this example, you cannot dump pubs2. The return code of 106 is a sum of all
the conditions met (2, 8, 32, 64). See the Usage section for a description of the
return codes.

Usage tran_dumpable_status allows you to determine if dump transaction is allowed
on a database without having to run the command. tran_dumpable_status
performs all of the checks that Adaptive Server performs when dump
transaction is issued.

If tran_dumpable_status returns 0, you can perform the dump transaction
command on the database. If it returns any other value, it cannot. The non-0
values are:

• 1 – A database with the name you specified does not exist.

• 2 – A log does not exist on a separate device.

• 4 – The log first page is in the bounds of a data-only disk fragment.

• 8 – the trunc log on chkpt option is set for the database.

• 16 – Non-logged writes have occurred on the database.

• 32 – Truncate-only dump tran has interrupted any coherent sequence of
dumps to dump devices.

• 64 – Database is newly created or upgraded. Transaction log may not be
dumped until a dump database has been performed.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute this function.

See also Command dump transaction

tsequal

252 Adaptive Server Enterprise

tsequal
Description Compares timestamp values to prevent update on a row that has been modified

since it was selected for browsing.

Syntax tsequal(browsed_row_timestamp, stored_row_timestamp)

Parameters browsed_row_timestamp
 is the timestamp column of the browsed row.

stored_row_timestamp
is the timestamp column of the stored row.

Examples Retrieves the timestamp column from the current version of the publishers table
and compares it to the value in the timestamp column that has been saved. If the
values in the two timestamp columns are equal, tsequal updates the row. If the
values are not equal, tsequal returns this error message:

update publishers
set city = "Springfield"
where pub_id = "0736"
and tsequal(timestamp, 0x0001000000002ea8)

Usage • tsequal, a system function, compares the timestamp column values to
prevent an update on a row that has been modified since it was selected for
browsing. For general information about system functions, see “System
functions” on page 68.

• tsequal allows you to use browse mode without calling the dbqual function
in DB-Library. Browse mode supports the ability to perform updates while
viewing data. It is used in front-end applications using Open Client and a
host programming language. A table can be browsed if its rows have been
timestamped.

• To browse a table in a front-end application, append the for browse
keywords to the end of the select statement sent to Adaptive Server. For
example:

Start of select statement in an Open Client application
...

for browse

Completion of the Open Client application routine

• Do not use tsequal in the where clause of a select statement; only in the
where clause of insert and update statements where the rest of the where
clause matches a single unique row.

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 253

If you use a timestamp column as a search clause, compare it like a regular
varbinary column; that is, timestamp1 = timestamp2.

Timestamping a new table for browsing

• When creating a new table for browsing, include a column named
timestamp in the table definition. The column is automatically assigned a
datatype of timestamp; you do not have to specify its datatype. For
example:

create table newtable(col1 int, timestamp, col3 char(7))

Whenever you insert or update a row, Adaptive Server timestamps it by
automatically assigning a unique varbinary value to the timestamp column.

Timestamping an existing table

• To prepare an existing table for browsing, add a column named timestamp
using alter table. For example, to add a timestamp column with a NULL
value to each existing row:

alter table oldtable add timestamp

To generate a timestamp, update each existing row without specifying new
column values:

update oldtable
set col1 = col1

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute tsequal.

See also Datatype Timestamp datatype

uhighsurr

254 Adaptive Server Enterprise

uhighsurr
Description Returns 1 if the Unicode value at position start is the high half of a surrogate

pair (which should appear first in the pair). Returns 0 otherwise.

Syntax uhighsurr(uchar_expr, start)

Parameters uchar_expr
is a character-type column name, variable, or constant expression of unichar
or univarchar type.

start
specifies the character position to investigate.

Usage • uhighsurr, a string function, allows you to write explicit code for surrogate
handling. Specifically, if a substring starts on a Unicode character where
uhighsurr is true, extract a substring of at least 2 Unicode values (substr
does not extract half of a surrogate pair).

• If uchar_expr is NULL, uhighsurr returns NULL.

• For general information about string functions, see “String functions” on
page 67.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute uhighsurr.

See also Function ulowsurr

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 255

ulowsurr
Description Returns 1 if the Unicode value at position start is the low half of a surrogate

pair (which should appear second in the pair). Returns 0 otherwise.

Syntax ulowsurr(uchar_expr, start)

Parameters uchar_expr
is a character-type column name, variable, or constant expression of unichar
or univarchar type.

start
specifies the character position to investigate.

Usage • ulowsurr, a string function, allows you to write explicit code around
adjustments performed by substr(), stuff(), and right(). Specifically, if a
substring ends on a Unicode value where ulowsurr() is true, the user knows
to extract a substring of 1 less characters (or 1 more). substr() does not
extract a string that contains an unmatched surrogate pair.

• If uchar_expr is NULL, ulowsurr returns NULL.

• For general information about string functions, see “String functions” on
page 67.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute ulowsurr.

See also Function uhighsurr

upper

256 Adaptive Server Enterprise

upper
Description Returns the uppercase equivalent of the specified string.

Syntax upper(char_expr)

Parameters char_expr
is a character-type column name, variable, or constant expression of char,
unichar, varchar, nchar, nvarchar, or univarchar type.

Examples select upper("abcd")

ABCD

Usage • upper, a string function, converts lowercase to uppercase, returning a
character value.

• If char_expr or uchar_expr is NULL, upper returns NULL.

• Characters that have no upper-ase equivalent are left unmodified.

• If a unichar expression is created containing only half of a surrogate pair,
an error message appears and the operation is aborted.

• For general information about string functions, see “String functions” on
page 67.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute upper.

See also Function lower

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 257

uscalar
Description Returns the Unicode scalar value for the first Unicode character in an

expression.

Syntax uscalar(uchar_expr)

Parameters uchar_expr
is a character-type column name, variable, or constant expression of unichar,
or univarchar type.

Usage • uscalar, a string function, returns the Unicode value for the first Unicode
character in an expression.

• If uchar_expr is NULL, returns NULL.

• If uscalar is called on a uchar_expr containing an unmatched surrogate
half, and error occurs and the operation is aborted.

• For general information about string functions, see “String functions” on
page 67.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute uscalar.

See also Functions ascii

used_pages

258 Adaptive Server Enterprise

used_pages
Description Reports the number of pages used by a table, an index, or a specific partition.

Unlike data_pages, used_pages does include pages used for internal structures.
This function replaces the used_pgs function used in versions of Adaptive
Server earlier than 15.0.

Syntax used_pages(dbid, object_id [, indid [, ptnid]])

Parameters dbid
the database id where target object resides.

object_id
is the object ID of the table for which you want to see the used pages. To see
the pages used by an index, specify the object ID of the table to which the
index belongs.

indid
is the index id of interest.

ptnid
is the partition id of interest.

Examples Example 1 Returns the number of pages used by the object with a object ID of
31000114 in the specified database (including any indexes):

select used_pages(5, 31000114)

Example 2 Returns the number of pages used by the object in the data layer,
regardless of whether or not a clustered index exists:

select used_pages(5, 31000114, 0)

Example 3 Returns the number of pages used by the object in the index layer
for a clustered index. This does not include the pages used by the data layer:

select used_pages(5, 31000114, 1)

Example 4 Returns the number of pages used by the object in the data layer of
the specific partition, which in this case is 2323242432:

select used_pages(5, 31000114, 0, 2323242432)

Usage • used_pages(dbid, objid, 0) is identical to used_pages(dbid, objid, 1) in the
case of an all-page lock table with a clustered index. This is similar to the
old used_pgs(objid, doampg, ioampg) function.

• All erroneous conditions result in a return value of zero.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute used_pgs.

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 259

See also Functions data_pages, object_id

user

260 Adaptive Server Enterprise

user
Description Returns the name of the current user.

Syntax user

Parameters None.

Examples select user

dbo

Usage • user, a system function, returns the user’s name.

• If the sa_role is active, you are automatically the Database Owner in any
database you are using. Inside a database, the user name of the Database
Owner is always “dbo”.

• For general information about system functions, see “System functions”
on page 68.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute user.

See also Functions user_name

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 261

user_id
Description Returns the ID number of the specified user or of the current user in the

database.

Syntax user_id([user_name])

Parameters user_name
is the name of the user.

Examples Example 1

select user_id()

1

Example 2

select user_id("margaret")

4

Usage • user_id, a system function, returns the user’s ID number. For general
information about system functions, see “System functions” on page 68.

• user_id reports the number from sysusers in the current database. If no
user_name is supplied, user_id returns the ID of the current user. To find
the server user ID, which is the same number in every database on
Adaptive Server, use suser_id.

• Inside a database, the “guest” user ID is always 2.

• Inside a database, the user_id of the Database Owner is always 1. If you
have the sa_role active, you are automatically the Database Owner in any
database you are using. To return to your actual user ID, use set sa_role off
before executing user_id. If you are not a valid user in the database,
Adaptive Server returns an error when you use set sa_role off.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions You must System Administrator or System Security Officer to use this function
on a user_name other than your own.

See also Commands setuser

Functions suser_id, user_name

user_name

262 Adaptive Server Enterprise

user_name
Description Returns the name within the database of the specified user or of the current

user.

Syntax user_name([user_id])

Parameters user_id
is the ID of a user.

Examples Example 1

select user_name()

dbo

Example 2

select user_name(4)

margaret

Usage • user_name, a system function, returns the user’s name, based on the user’s
ID in the current database. For general information about system
functions, see “System functions” on page 68.

• If no user_id is supplied, user_name returns the name of the current user.

• If the sa_role is active, you are automatically the Database Owner in any
database you are using. Inside a database, the user_name of the Database
Owner is always “dbo”.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions You must be a System Administrator or System Security Officer to use this
function on a user_id other than your own.

See also Functions suser_name, user_id

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 263

valid_name
Description Returns 0 if the specified string is not a valid identifier or a number other than

0 if the string is a valid identifier, and can be up to 255 bytes in length.

Syntax valid_name(character_expression [, maximum_length])

Parameters character_expression
is a character-type column name, variable, or constant expression of char,
varchar, nchar or nvarchar type. Constant expressions must be enclosed in
quotation marks.

maximum_length
is an integer larger than 0 and less than or equal to 255. The default value is
30. If the identifier length is larger than the second argument, valid_name
returns 0, and returns a value greater than zero if the identifier length is
invalid.

Examples Creates a procedure to verify that identifiers are valid:

create procedure chkname
@name varchar(30)
as

if valid_name(@name) = 0
print "name not valid"

Usage • valid_name, a system function, returns 0 if the character_ expression is not
a valid identifier (illegal characters, more than 30 bytes long, or a reserved
word), or a number other than 0 if it is a valid identifier.

• Adaptive Server identifiers can be a maximum of 16384 bytes in length,
whether single-byte or multibyte characters are used. The first character of
an identifier must be either an alphabetic character, as defined in the
current character set, or the underscore (_) character. Temporary table
names, which begin with the pound sign (#), and local variable names,
which begin with the at sign (@), are exceptions to this rule. valid_name
returns 0 for identifiers that begin with the pound sign (#) and the at sign
(@).

• For general information about system functions, see “System functions”
on page 68.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute valid_name.

See also System procedure sp_checkreswords

valid_user

264 Adaptive Server Enterprise

valid_user
Description Returns 1 if the specified ID is a valid user or alias in at least one database on

this Adaptive Server.

Syntax valid_user(server_user_id)

Parameters server_user_id
is a server user ID. Server user IDs are stored in the suid column of syslogins.

Examples select valid_user(4)

1

Usage • valid_user, a system function, returns 1 if the specified ID is a valid user or
alias in at least one database on this Adaptive Server.

• For general information about system functions, see “System functions”
on page 68.

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions You must be a System Administrator or a System Security Officer to use this
function on a server_user_id other than your own.

See also System procedures sp_addlogin, sp_adduser

CHAPTER 2 Transact-SQL Functions

Reference Manual: Building Blocks 265

year
Description Returns an integer that represents the year in the datepart of a specified date.

Syntax year(date_expression)

Parameters date_expression
is an expression of type datetime, smalldatetime, date, time or a character
string in a datetime format.

Examples Returns the integer 03:

year("11/02/03")

03
(1 row(s) affected)

Usage year(date_expression) is equivalent to datepart(yy, date_expression).

Standards ANSI SQL – Compliance level: Transact-SQL extension.

Permissions Any user can execute year.

See also Datatypes datetime, smalldatetime, date

Functions datepart, day, month

year

266 Adaptive Server Enterprise

Reference Manual: Building Blocks 267

C H A P T E R 3 Global Variables

Adaptive Server global variables
Global variables are system-defined variables updated by Adaptive Server
while the system is running. Some global variables are session-specific,
while others are server instance-specific. For example, @@error contains
the last error number generated by the system for a given user connection.

See get_appcontext and set_appcontext to specify application context
variables.

To view the value for any global variable, enter:

select variable_name

For example:

select @@char_convert

Table 3-1lists the global variables available for Adaptive Server:

Table 3-1: Adaptive Server global variables

Topics Page
Adaptive Server global variables 267

Global variable Definition

@@authmech A read-only variable that indicates the mechanism used to authenticate the user.

@@bootcount Returns the number of times an Adaptive Server installation has been booted.

@@boottime Returns the date and time Adaptive Server was last booted.

@@bulkarraysize Returns the number of rows to be buffered in local server memory before being
transferred using the bulk copy interface Used only with Component Integration
Services for transferring rows to a remote server using select into. For more
information, see the Component Integration Services User’s Guide.

@@bulkbatchsize Returns the number of rows transferred to a remote server via select into proxy_table
using the bulk interface. Used only with Component Integration Services for
transferring rows to a remote server using select into. For more information, see the
Component Integration Services User’s Guide.

Adaptive Server global variables

268 Adaptive Server Enterprise

@@char_convert Returns 0 if character set conversion is not in effect. Returns 1 if character set
conversion is in effect.

@@cis_rpc_handling Returns 0 if cis rpc handling is off. Returns 1 if cis rpc handling is on. For more
information, see the Component Integration Services User’s Guide.

@@cis_version Returns the date and version of Component Integration Services.

@@client_csexpansion Returns the expansion factor used when converting from the server character set to the
client character set. For example, if it contains a value of 2, a character in the server
character set could take up to twice the number of bytes after translation to the client
character set.

@@client_csid Returns -1 if the client character set has never been initialized. Returns the client
character set ID from syscharsets for the connection if the client character set has been
initialized.

@@client_csname Returns NULL if client character set has never been initialized; returns the name of the
character set for the connection if the client character set has been initialized.

@@cmpstate Returns the current mode of Adaptive Server in a high availability environment.

@@connections Returns the number of user logins attempted.

@@cpu_busy Returns the number of seconds, in CPU time, that Adaptive Server's CPU was
performing Adaptive Server work.

@@cursor_rows A global variable designed specifically for scrollable cursors. Displays the total
number of rows in the cursor result set. Returns the following values: –1:

• The cursor is dynamic. Because dynamic cursors reflect all changes, the number of
rows that qualify for the cursor is constantly changing. You can never be certain that
all the qualified rows are retrieved.

• The cursor is semi_sensitive and scrollable, but the scrolling worktable is not yet
fully populated. The number of rows that qualify the cursor is unknown at the time
this value is retrieved.

0: Either no cursors are open, no rows qualify for the last opened cursor, or the last
open cursor is closed or deallocated.

n: The last opened or fetched cursor result set is fully populated. The value returned is
the total number of rows in the cursor result set.

@@curloid Either no cursors are open, no rows qualify for the last opened cursor, or the last open
cursor is closed or deallocated.

@@datefirst Set using set datefirst n where n is a value between 1 and 7. Returns the current value
of @@datefirst, indicating the specified first day of each week, expressed as tinyint.

The default value in Adaptive Server is Sunday (based on the us_language default),
which you set by specifying set datefirst 7. See the datefirst option of the set
command for more information on settings and values.

@@dbts Returns the timestamp of the current database.

@@error Returns the error number most recently generated by the system.

Global variable Definition

CHAPTER 3 Global Variables

Reference Manual: Building Blocks 269

@@errorlog Returns the full path to the directory in which the Adaptive Server errorlog is kept,
relative to $SYBASE directory (%SYBASE% on NT).

@@failedoverconn Returns a value greater than 0 if the connection to the primary companion has failed
over and is executing on the secondary companion server. Used only in a high
availability environment, and is session-specific.

@@fetch_status Returns values: 0: fetch operation successful; –1: fetch operation unsuccessful; –2:
value reserved for future use.

@@guestuserid Returns the ID of the guest user.

@@hacmpservername Returns the name of the companion server in a high availability setup.

@@haconnection Returns a value greater than 0 if the connection has the failover property enabled. This
is a session-specific property.

@@heapmemsize Returns the size of the heap memory pool, in bytes. See the System Administration
Guide for more information on heap memory.

@@identity Returns the most recently generated IDENTITY column value.

@@idle Returns the number of seconds, in CPU time, that Adaptive Server has been idle.

@@invaliduserid Returns a value of -1 for an invalid user ID.

@@io_busy Returns the number of seconds in CPU time that Adaptive Server has spent doing input
and output operations.

@@isolation Returns the value of the session-specific isolation level (0, 1, or 3) of the current
Transact-SQL program.

@@kernel_addr Returns the starting address of the first shared memory region that contains the kernel
region. The result is in the form of 0xaddress pointer value.

@@kernel_size Returns the size of the kernel region that is part of the first shared memory region.

@@langid Returns the server-wide language ID of the language in use, as specified in
syslanguages.langid.

@@language Returns the name of the language in use, as specified in syslanguages.name.

@@lock_timeout Set using set lock wait n. Returns the current lock_timeout setting, in milliseconds.
@@lock_timeout returns the value of n. The default value is no timeout. If no set lock
wait n is executed at the beginning of the session, @@lock_timeout returns -1.

@@maxcharlen Returns the maximum length, in bytes, of a character in Adaptive Server's default
character set.

@@max_connections Returns the maximum number of simultaneous connections that can be made with
Adaptive Server in the current computer environment. You can configure Adaptive
Server for any number of connections less than or equal to the value of
@@max_connections with the number of user connections configuration parameter.

@@maxgroupid Returns the highest group user ID. The highest value is 1048576.

@@maxpagesize Returns the server's logical page size.

@@max_precision Returns the precision level used by decimal and numeric datatypes set by the server.
This value is a fixed constant of 38.

@@maxspid Returns maximum valid value for the spid.

Global variable Definition

Adaptive Server global variables

270 Adaptive Server Enterprise

@@maxsuid Returns the highest server user ID. The default value is 2147483647.

@@maxuserid Returns the highest user ID. The highest value is 2147483647.

@@mempool_addr Returns the global memory pool table address. The result is in the form 0xaddress
pointer value. This variable is for internal use.

@@min_poolsize Returns the minimum size of a named cache pool, in kilobytes. It is calculated based
on the DEFAULT_POOL_SIZE, which is 256, and the current value of max database
page size.

@@mingroupid Returns the lowest group user ID. The lowest value is 16384.

@@minspid Returns 1, which is the lowest value for spid.

@@minsuid Returns the minimum server user ID. The lowest value is -32768.

@@minuserid Returns the lowest user ID. The lowest value is -32768.

@@monitors_active Reduces the number of messages displayed by sp_sysmon.

@@ncharsize Returns the maximum length, in bytes, of a character set in the current server default
character set.

@@nestlevel Returns the current nesting level.

@@nodeid Returns the current installation's 48-bit node identifier. Adaptive Server generates a
nodeid the first time the master device is first used, and uniquely identifies an Adaptive
Server installation.

@@optgoal Returns the current optimization goal setting for query optimization

@@options Returns a hexadecimal representation of the session's set options.

@@opttimeout Returns the current optimization timeout limit setting for query optimization

@@pack_received Retruns the number of input packets read by Adaptive Server.

@@pack_sent Returns the nmber of output packets written by Adaptive Server.

@@packet_errors Returns the number of errors detected by Adaptive Server while reading and writing
packets.

@@pagesize Returns the server’s virtual page size.

@@parallel_degree Returns the current maximum parallel degree setting.

@@probesuid Returns a value of 2 for the probe user ID.

@@procid Returns the stored procedure ID of the currently executing procedure.

Global variable Definition

CHAPTER 3 Global Variables

Reference Manual: Building Blocks 271

@@recovery_state Indicates whether Adaptive Server is in recovery based on these returns:

• NOT_IN_RECOVERY – Adaptive Server is not in startup recovery or in failover
recovery. Recovery has been completed and all databases that can be online are
brought online.

• RECOVERY_TUNING – Adaptive Server is in recovery (either startup or failover)
and is tuning the optimal number of recovery tasks.

• BOOTIME_RECOVERY – Adaptive Server is in startup recovery and has
completed tuning the optimal number of tasks. Not all databases have been
recovered.

• FAILOVER_RECOVER – Adaptive Server is in recovery during an HA failover
and has completed tuning the optimal number of recovery tasks. All databases are
not brought online yet.

@@repartition_degree Returns the current dynamic repartitioning degree setting

@@resource_granularity Returns the maximum resource usage hint setting for query optimization

@@rowcount The value of @@rowcount is affected by whether the specified cursor is forward-only
or scrollable.

If the cursor is the default, non-scrollable cursor, the value of @@rowcount increments
one by one, in the forward direction only, until the number of rows in the result set are
fetched.These rows are fetched from the underlying tables to the client. The maximum
value for @@ rowcount is the number of rows in the result set.

In the default cursor, @@rowcount is set to 0 by any command that does not return or
affect rows, such as an if or set command, or an update or delete statement that does
not affect any rows.

If the cursor is scrollable, there is no maximum value for @@rowcount. The value
continues to increment with each fetch, regardless of direction, and there is no
maximum value. The @@rowcount value in scrollable cursors reflects the number of
rows fetched from the result set, not from the underlying tables, to the client.

@@scan_parallel_degree Returns the current maximum parallel degree setting for nonclustered index scans.

@@servername Returns the name of Adaptive Server.

@@setrowcount Returns the current value for set rowcount

@@shmem_flags Returns the shared memory region properties. This variable is for internal use. There
are a total of 13 different properties values corresponding to 13 bits in the integer. The
valid values represented from low to high bit are: MR_SHARED, MR_SPECIAL,
MR_PRIVATE, MR_READABLE, MR_WRITABLE, MR_EXECUTABLE,
MR_HWCOHERENCY, MR_SWCOHERENC, MR_EXACT, MR_BEST,
MR_NAIL, MR_PSUEDO, MR_ZERO.

@@spid Returns the server process ID of the current process.

@@sqlstatus Returns status information (warning exceptions) resulting from the execution of a
fetch statement.

Global variable Definition

Adaptive Server global variables

272 Adaptive Server Enterprise

@@ssl_ciphersuite Returns NULL if SSL is not used on the current connection; otherwise, it returns the
name of the cipher suite you chose during the SSL handshake on the current
connection.

@@stringsize Returns the amount of character data returned from a toString() method. The default is
50. Max values may be up to 2GB. A value of zero specifies the default value. See the
Component Integration Services User’s Guide for more information.

@@tempdbid Returns a valid temporary database ID (dbid) of the session’s assigned temporary
database.

@@textcolid Returns the column ID of the column referenced by @@textptr.

@@textdataptnid Returns the partition ID of a text partition containing the column referenced by
@@textptr.

@@textdbid Returns the database ID of a database containing an object with the column referenced
by @@textptr.

@@textobjid Returns the object ID of an object containing the column referenced by @@textptr.

@@textptnid Returns the partition ID of a data partition containing the column referenced by
@@textptr.

@@textptr Returns the text pointer of the last text, unitext, or image column inserted or updated
by a process (Not the same as the textptr function).

@@textptr_parameters Returns 0 if the current status of the textptr_parameters configuration parameter is off.
Returns 1 if the current status of the textptr_parameters if on. See the Component
Integration Services User’s Guide for more information.

@@textsize Returns the limit on the number of bytes of text, unitext, or image data a select returns.
Default limit is 32K bytes for isql; the default depends on the client software. Can be
changed for a session with set textsize.

@@textts Returns the text timestamp of the column referenced by @@textptr.

@@thresh_hysteresis Returns the decrease in free space required to activate a threshold. This amount, also
known as the hysteresis value, is measured in 2K database pages. It determines how
closely thresholds can be placed on a database segment.

@@timeticks Returns the number of microseconds per tick. The amount of time per tick is
machine-dependent.

@@total_errors Returns the number of errors detected by Adaptive Server while reading and writing.

@@total_read Returns the number of disk reads by Adaptive Server.

@@total_write Returns the number of disk writes by Adaptive Server.

@@tranchained Returns 0 if the current transaction mode of the Transact-SQL program is unchained.
Returns 1 if the current transaction mode of the Transact-SQL program is chained.

@@trancount Returns the nesting level of transactions in the current user session.

@@transactional_rpc Returns 0 if RPCs to remote servers are transactional. Returns 1 if RPCs to remote
servers are not transactional. For more information, see enable xact coordination and
set option transactional_rpc in the Reference Manual. Also, see the Component
Integration Services User’s Guide.

Global variable Definition

CHAPTER 3 Global Variables

Reference Manual: Building Blocks 273

@@transtate Returns the current state of a transaction after a statement executes in the current user
session.

@@unicharsize Returns 2, the size of a character in unichar.

@@version Returns the date, version string, and so on of the current release of Adaptive Server.

@@version_number Returns the whole version of the current release of Adaptive Server as an integer

@@version_as_integer Returns the number of the last upgrade version of the current release of Adaptive
Server as an integer. For example, @@version_as_integer returns 12500 if you are
running Adaptive Server version 12.5, 12.5.0.3, or 12.5.1.

Global variable Definition

Adaptive Server global variables

274 Adaptive Server Enterprise

Reference Manual: Building Blocks 275

C H A P T E R 4 Expressions, Identifiers, and
Wildcard Characters

This chapter describes Transact-SQL expressions, valid identifiers, and
wildcard characters.

Topics covered are:

Expressions
An expression is a combination of one or more constants, literals,
functions, column identifiers and/or variables, separated by operators, that
returns a single value. Expressions can be of several types, including
arithmetic, relational, logical (or Boolean), and character string. In
some Transact-SQL clauses, a subquery can be used in an expression. A
case expression can be used in an expression.

Table 4-1 lists the types of expressions that are used in Adaptive Server
syntax statements.

Table 4-1: Types of expressions used in syntax statements

Topics Page
Expressions 275

Identifiers 285

Pattern matching with wildcard characters 293

Usage Definition

expression Can include constants, literals, functions, column identifiers, variables, or parameters

logical expression An expression that returns TRUE, FALSE, or UNKNOWN

constant expression An expression that always returns the same value, such as “5+3” or “ABCDE”

float_expr Any floating-point expression or an expression that implicitly converts to a floating value

integer_expr Any integer expression or an expression that implicitly converts to an integer value

numeric_expr Any numeric expression that returns a single value

char_expr Any expression that returns a single character-type value

binary_expression An expression that returns a single binary or varbinary value

Expressions

276 Adaptive Server Enterprise

Size of expressions
Expressions returning binary or character datum can be up to 16384 bytes in
length. However, earlier versions of Adaptive Server only allowed expressions
to be up to 255 bytes in length. If you have upgraded from an earlier release of
Adaptive Server, and your stored procedures or scripts store a result string of
up to 255 bytes, the remainder will be truncated. You may have to re-write
these stored procedures and scripts for to account for the additional length of
the expressions.

Arithmetic and character expressions
The general pattern for arithmetic and character expressions is:

{constant | column_name | function | (subquery)
| (case_expression)}

[{arithmetic_operator | bitwise_operator |
string_operator | comparison_operator }

{constant | column_name | function | (subquery)
| case_expression}]...

Relational and logical expressions
A logical expression or relational expression returns TRUE, FALSE, or
UNKNOWN. The general patterns are:

expression comparison_operator [any | all] expression

expression [not] in expression

[not]exists expression

expression [not] between expression and expression

expression [not] like "match_string"
[escape "escape_character "]

not expression like "match_string"
[escape "escape_character "]

expression is [not] null

not logical_expression

logical_expression {and | or} logical_expression

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

Reference Manual: Building Blocks 277

Operator precedence
Operators have the following precedence levels, where 1 is the highest level
and 6 is the lowest:

1 unary (single argument) – + ~

2 * / %

3 binary (two argument) + – & | ^

4 not

5 and

6 or

When all operators in an expression are at the same level, the order of
execution is left to right. You can change the order of execution with
parentheses—the most deeply nested expression is processed first.

Arithmetic operators
Adaptive Server uses the following arithmetic operators:

Table 4-2: Arithmetic operators

Addition, subtraction, division, and multiplication can be used on exact
numeric, approximate numeric, and money type columns.

The modulo operator cannot be used on smallmoney, money, numeric, float or
real columns. Modulo finds the integer remainder after a division involving
two whole numbers. For example, 21 % 11 = 10 because 21 divided by 11
equals 1 with a remainder of 10.

When you perform arithmetic operations on mixed datatypes, for example float
and int, Adaptive Server follows specific rules for determining the type of the
result. For more information, see Chapter 1, “System and User-Defined
Datatypes,”

Operator Meaning

 + Addition

 – Subtraction

 * Multiplication

 / Division

 % Modulo (Transact-SQL extension)

Expressions

278 Adaptive Server Enterprise

Bitwise operators
The bitwise operators are a Transact-SQL extension for use with integer type
data. These operators convert each integer operand into its binary
representation, then evaluate the operands column by column. A value of 1
corresponds to true; a value of 0 corresponds to false.

Table 4-3 summarizes the results for operands of 0 and 1. If either operand is
NULL, the bitwise operator returns NULL:

Table 4-3: Truth tables for bitwise operations

The examples in Table 4-4 use two tinyint arguments, A = 170
(10101010 in binary form) and B = 75 (01001011 in binary form).

& (and) 1 0

1 1 0

0 0 0

 | (or) 1 0

1 1 1

0 1 0

^ (exclusive or) 1 0

1 0 1

0 1 0

~ (not)

1 FALSE

0 0

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

Reference Manual: Building Blocks 279

Table 4-4: Examples of bitwise operations

String concatenation operator
You can use both the + and || (double-pipe) string operators to concatenate two
or more character or binary expressions. For example, the following displays
author names under the column heading Name in last-name first-name order,
with a comma after the last name; for example, “Bennett, Abraham.”:

select Name = (au_lname + ", " + au_fname)
from authors

This example results in "abcdef", "abcdef":

select "abc" + "def", "abc" || "def"

The following returns the string “abc def”. The empty string is interpreted as a
single space in all char, varchar, unichar, nchar, nvarchar, and text
concatenation, and in varchar and univarchar insert and assignment statements:

select "abc" + "" + "def"

When concatenating non-character, non-binary expressions, always use
convert:

select "The date is " +
 convert(varchar(12), getdate())

Operation Binary form Result Explanation

(A & B) 10101010

01001011

00001010

10 Result column equals 1 if both A and B
are 1. Otherwise, result column equals 0.

(A | B) 10101010

01001011

11101011

235 Result column equals 1 if either A or B, or
both, is 1. Otherwise, result column
equals 0

(A ^ B) 10101010

01001011

11100001

225 Result column equals 1 if either A or B,
but not both, is 1

(~A) 10101010

01010101

85 All 1s are changed to 0s and all 0s to 1s

Expressions

280 Adaptive Server Enterprise

A string concatenated with NULL evaluates to the value of the string. This is
an exception to the SQL standard, which states that a string concatenated with
a NULL should evaluate to NULL.

Comparison operators
Adaptive Server uses the comparison operators listed in Table 4-5:

Table 4-5: Comparison operators

In comparing character data, < means closer to the beginning of the server’s
sort order and > means closer to the end of the sort order. Uppercase and
lowercase letters are equal in a case-insensitive sort order. Use sp_helpsort to
see the sort order for your Adaptive Server. Trailing blanks are ignored for
comparison purposes. So, for example, “Dirk” is the same as “Dirk ”.

In comparing dates, < means earlier and > means later.

Put single or double quotes around all character and datetime data used with a
comparison operator:

= "Bennet"
> "May 22 1947"

Nonstandard operators
The following operators are Transact-SQL extensions:

• Modulo operator: %

• Negative comparison operators: !>, !<, !=

Operator Meaning

= Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

<> Not equal to

!= Transact-SQL extension Not equal to

!> Transact-SQL extension Not greater than

!< Transact-SQL extension Not less than

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

Reference Manual: Building Blocks 281

• Bitwise operators: ~, ^, |, &

• Join operators: *= and =*

Using any, all and in
any is used with <, >, or = and a subquery. It returns results when any value
retrieved in the subquery matches the value in the where or having clause of the
outer statement. For more information, see the Transact-SQL User’s Guide.

all is used with < or > and a subquery. It returns results when all values retrieved
in the subquery are less than (<) or greater than (>) the value in the where or
having clause of the outer statement. For more information, see the
Transact-SQL User’s Guide.

in returns results when any value returned by the second expression matches
the value in the first expression. The second expression must be a subquery or
a list of values enclosed in parentheses. in is equivalent to = any. For more
information, see where clause in Reference Manual: Commands.

Negating and testing
not negates the meaning of a keyword or logical expression.

Use exists, followed by a subquery, to test for the existence of a particular
result.

Ranges
between is the range-start keyword; and is the range-end keyword. The
following range is inclusive:

 where column1 between x and y

The following range is not inclusive:

 where column1 > x and column1 < y

Using nulls in expressions
Use is null or is not null in queries on columns defined to allow null values.

Expressions

282 Adaptive Server Enterprise

An expression with a bitwise or arithmetic operator evaluates to NULL if any
of the operands are null. For example, the following evaluates to NULL if
column1 is NULL:

1 + column1

Comparisons that return TRUE

In general, the result of comparing null values is UNKNOWN, since it is not
possible to determine whether NULL is equal (or not equal) to a given value or
to another NULL. However, the following cases return TRUE when expression
is any column, variable or literal, or combination of these, which evaluates as
NULL:

• expression is null

• expression = null

• expression = @x, where @x is a variable or parameter containing NULL.
This exception facilitates writing stored procedures with null default
parameters.

• expression != n, where n is a literal that does not contain NULL, and
expression evaluates to NULL.

The negative versions of these expressions return TRUE when the expression
does not evaluate to NULL:

• expression is not null

• expression != null

• expression != @x

Note The far right side of these exceptions is a literal null, or a variable or
parameter containing NULL. If the far right side of the comparison is an
expression (such as @nullvar + 1), the entire expression evaluates to NULL.

Following these rules, null column values do not join with other null column
values. Comparing null column values to other null column values in a where
clause always returns UNKNOWN for null values, regardless of the
comparison operator, and the rows are not included in the results. For example,
this query returns no result rows where column1 contains NULL in both tables
(although it may return other rows):

select column1
from table1, table2

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

Reference Manual: Building Blocks 283

where table1.column1 = table2.column1

Difference between FALSE and UNKNOWN

Although neither FALSE nor UNKNOWN returns values, there is an important
logical difference between FALSE and UNKNOWN, because the opposite of
false (“not false”) is true. For example, “1 = 2” evaluates to false and its
opposite, “1 != 2”, evaluates to true. But “not unknown” is still unknown. If
null values are included in a comparison, you cannot negate the expression to
get the opposite set of rows or the opposite truth value.

Using “NULL” as a character string

Only columns for which NULL was specified in the create table statement and
into which you have explicitly entered NULL (no quotes), or into which no
data has been entered, contain null values. Avoid entering the character string
“NULL” (with quotes) as data for a character column. It can only lead to
confusion. Use “N/A”, “none”, or a similar value instead. When you want to
enter the value NULL explicitly, do not use single or double quotes.

NULL compared to the empty string

The empty string (“ ”or ‘ ’) is always stored as a single space in variables and
column data. This concatenation statement is equivalent to “abc def”, not to
“abcdef”:

"abc" + "" + "def"

The empty string is never evaluated as NULL.

Connecting expressions
and connects two expressions and returns results when both are true. or
connects two or more conditions and returns results when either of the
conditions is true.

When more than one logical operator is used in a statement, and is evaluated
before or. You can change the order of execution with parentheses.

Table 4-6 shows the results of logical operations, including those that involve
null values.

Expressions

284 Adaptive Server Enterprise

Table 4-6: Truth tables for logical expressions

The result UNKNOWN indicates that one or more of the expressions evaluates
to NULL, and that the result of the operation cannot be determined to be either
TRUE or FALSE. See “Using nulls in expressions” on page 281 for more
information.

Using parentheses in expressions
Parentheses can be used to group the elements in an expression. When
“expression” is given as a variable in a syntax statement, a simple expression
is assumed. “Logical expression” is specified when only a logical expression
is acceptable.

Comparing character expressions
Character constant expressions are treated as varchar. If they are compared
with non-varchar variables or column data, the datatype precedence rules are
used in the comparison (that is, the datatype with lower precedence is
converted to the datatype with higher precedence). If implicit datatype
conversion is not supported, you must use the convert function.

Comparison of a char expression to a varchar expression follows the datatype
precedence rule; the “lower” datatype is converted to the “higher” datatype. All
varchar expressions are converted to char (that is, trailing blanks are appended)
for the comparison. If a unichar expression is compared to a char (varchar,
nchar, nvarchar) expression, the latter is implicitly converted to unichar.

and TRUE FALSE NULL

TRUE TRUE FALSE UNKNOWN

FALSE FALSE FALSE FALSE

NULL UNKNOWN FALSE UNKNOWN

or TRUE FALSE NULL

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN

NULL TRUE UNKNOWN UNKNOWN

not

TRUE FALSE

FALSE TRUE

NULL UNKNOWN

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

Reference Manual: Building Blocks 285

Using the empty string
The empty string ("") or ('') is interpreted as a single blank in insert or
assignment statements on varchar or univarchar data. In concatenation of
varchar, char, nchar, nvarchar data, the empty string is interpreted as a single
space; for following example is stored as “abc def”:

"abc" + "" + "def"

The empty string is never evaluated as NULL.

Including quotation marks in character expressions
There are two ways to specify literal quotes within a char, or varchar entry. The
first method is to double the quotes. For example, if you begin a character entry
with a single quote and you want to include a single quote as part of the entry,
use two single quotes:

'I don''t understand.'

With double quotes:

"He said, ""It's not really confusing."""

The second method is to enclose a quote in the opposite kind of quote mark. In
other words, surround an entry containing a double quote with single quotes (or
vice versa). Here are some examples:

'George said, "There must be a better way."'
"Isn't there a better way?"
'George asked, "Isn"t there a better way?"'

Using the continuation character
To continue a character string to the next line on your screen, enter a backslash
(\) before going to the next line.

Identifiers
Identifiers are names for database objects such as databases, tables, views,
columns, indexes, triggers, procedures, defaults, rules, and cursors.

Identifiers

286 Adaptive Server Enterprise

The limit for the length of object names or identifiers is 255 bytes for regular
identifiers, and 253 bytes for delimited identifiers. The limit applies to most
user-defined identifiers including table name, column name, index name and
so on. Due to the expanded limits, some system tables (catalogs) and built-in
functions have been expanded.

For variables, “@” count as 1 byte, and the allowed name for it is 254 bytes
long.

Listed below are the identifiers, system tables, and built-in functions that are
affected these limits.

The maximum length for these identifiers is now 255 bytes.

• Table name

• Column name

• Index name

• View name

• User-defined datatype

• Trigger name

• Default name

• Rule name

• Constraint name

• Procedure name

• Variable name

• JAR name

• Name of LWP or dynamic statement

• Function name

• Name of the time range

• Application context name

Most user-defined Adaptive Server identifiers can be a maximum of 255 bytes
in length, whether single-byte or multibyte characters are used. Others can be
a mximum of 30 bytes. Refer to the Transact-SQL User’s Guide for a list of
both 255-byte and 30-byte identifiers.

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

Reference Manual: Building Blocks 287

The first character of an identifier must be either an alphabetic character, as
defined in the current character set, or the underscore (_) character.

Note Temporary table names, which begin with the pound sign (#), and
variable names, which begin with the at sign (@), are exceptions to this rule.

Subsequent characters can include letters, numbers, the symbols #, @, _, and
currency symbols such as $ (dollars), ¥ (yen), and £ (pound sterling).
Identifiers cannot include special characters such as !, %, ^, &, *, and . or
embedded spaces.

You cannot use a reserved word, such as a Transact-SQL command, as an
identifier. For a complete list of reserved words, see Chapter 5, “Reserved
Words.”

You cannot use the dash symbol (–) as an identifier.

Short identifiers
The maximum length for these identifiers is 30 bytes:

• Cursor name

• Server name

• Host name

• Login name

• Password

• Host process identification

• Application name

• Initial language name

• Character set name

• User name

• Group name

• Database name

• Logical device name

• Segment name

Identifiers

288 Adaptive Server Enterprise

• Session name

• Execution class name

• Engine name

• Quiesce tag name

• Cache name

Tables beginning with # (temporary tables)
Tables with names that begin with the pound sign (#) are temporary tables. You
cannot create other types of objects with names that begin with the pound sign.

Adaptive Server performs special operations on temporary table names to
maintain unique naming on a per-session basis. When you create a temporary
table with a name of fewer than 238 bytes, the sysobjects name in the tempdb
adds 17 bytes to make the table name unique. If the table name is more than
238 bytes, the temporary table name in sysobjects uses only the first 238 bytes,
then adds 17 bytes to make it unique.

In versions of Adaptive Server earlier than 15.0, temporary table names in
sysobjects were 30 bytes. If you used a table name with fewer than 13 bytes,
the name was padded with underscores (_) to 13 bytes, then another 17 bytes
of other characters to bring the name up to 30 bytes.

Case sensitivity and identifiers
Sensitivity to the case (upper or lower) of identifiers and data depends on the
sort order installed on your Adaptive Server. Case sensitivity can be changed
for single-byte character sets by reconfiguring Adaptive Server’s sort order;
see the System Administration Guide for more information. Case is significant
in utility program options.

If Adaptive Server is installed with a case-insensitive sort order, you cannot
create a table named MYTABLE if a table named MyTable or mytable already
exists. Similarly, the following command will return rows from MYTABLE,
MyTable, or mytable, or any combination of uppercase and lowercase letters in
the name:

select * from MYTABLE

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

Reference Manual: Building Blocks 289

Uniqueness of object names
Object names need not be unique in a database. However, column names and
index names must be unique within a table, and other object names must be
unique for each owner within a database. Database names must be unique on
Adaptive Server.

Using delimited identifiers
Delimited identifiers are object names enclosed in double quotes. Using
delimited identifiers allows you to avoid certain restrictions on object names.
Table, view, and column names can be delimited by quotes; other object names
cannot.

Delimited identifiers can be reserved words, can begin with non-alphabetic
characters, and can include characters that would not otherwise be allowed.
They cannot exceed 253 bytes.

 Warning! Delimited identifiers may not be recognized by all front-end
applications and should not be used as parameters to system procedures.

Before creating or referencing a delimited identifier, you must execute:

set quoted_identifier on

Each time you use the delimited identifier in a statement, you must enclose it
in double quotes. For example:

create table "1one"(col1 char(3))
create table "include spaces" (col1 int)
create table "grant"("add" int)
insert "grant"("add") values (3)

While the quoted_identifier option is turned on, do not use double quotes around
character or date strings; use single quotes instead. Delimiting these strings
with double quotes causes Adaptive Server to treat them as identifiers. For
example, to insert a character string into col1 of 1table , use:

insert "1one"(col1) values ('abc')

Do not not use:

insert "1one"(col1) values ("abc")

To insert a single quote into a column, use two consecutive single quotation
marks. For example, to insert the characters “a’b” into col1 use:

Identifiers

290 Adaptive Server Enterprise

insert "1one"(col1) values('a''b')

Syntax that includes
quotes

When the quoted_identifier option is set to on, you do not need to use double
quotes around an identifier if the syntax of the statement requires that a quoted
string contain an identifier. For example:

set quoted_identifier on
create table '1one' (c1 int)

However, object_id() requires a string, so you must include the table name in
quotes to select the information:

select object_id('1one')

896003192

You can include an embedded double quote in a quoted identifier by doubling
the quote:

create table "embedded""quote" (c1 int)

However, there is no need to double the quote when the statement syntax
requires the object name to be expressed as a string:

select object_id('embedded"quote')

Identifying tables or columns by their qualified object name
You can uniquely identify a table or column by adding other names that qualify
it—the database name, owner’s name, and (for a column) the table or view
name. Each qualifier is separated from the next one by a period. For example:

database.owner.table_name.column_name
database.owner.view_name.column_name

The naming conventions are:

[[database.]owner.]table_name
[[database.]owner.]view_name

Using delimited identifiers within an object name

If you use set quoted_identifier on, you can use double quotes around individual
parts of a qualified object name. Use a separate pair of quotes for each qualifier
that requires quotes. For example, use:

database.owner."table_name"."column_name"

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

Reference Manual: Building Blocks 291

Do not use:

database.owner."table_name.column_name"

Omitting the owner name

You can omit the intermediate elements in a name and use dots to indicate their
positions, as long as the system is given enough information to identify the
object:

database..table_name

database..view_name

Referencing your own objects in the current database

You need not use the database name or owner name to reference your own
objects in the current database. The default value for owner is the current user,
and the default value for database is the current database.

If you reference an object without qualifying it with the database name and
owner name, Adaptive Server tries to find the object in the current database
among the objects you own.

Referencing objects owned by the database owner

If you omit the owner name and you do not own an object by that name,
Adaptive Server looks for objects of that name owned by the Database Owner.
You must qualify objects owned by the Database Owner only if you own an
object of the same name, but you want to use the object owned by the Database
Owner. However, you must qualify objects owned by other users with the
user’s name, whether or not you own objects of the same name.

Using qualified identifiers consistently

When qualifying a column name and table name in the same statement, be sure
to use the same qualifying expressions for each; they are evaluated as strings
and must match; otherwise, an error is returned. Example 2 is incorrect because
the syntax style for the column name does not match the syntax style used for
the table name.

Example 1 select demo.mary.publishers.city

from demo.mary.publishers

Identifiers

292 Adaptive Server Enterprise

city

Boston

Washington

Berkeley

Example 2 select demo.mary.publishers.city

from demo..publishers

The column prefix "demo.mary.publishers" does not match a

table name or alias name used in the query.

Determining whether an identifier is valid
Use the system function valid_name, after changing character sets or before
creating a table or view, to determine whether the object name is acceptable to
Adaptive Server. Here is the syntax:

select valid_name("Object_name")

If object_name is not a valid identifier (for example, if it contains illegal
characters or is more than 30 bytes long), Adaptive Server returns 0. If
object_name is a valid identifier, Adaptive Server returns a nonzero number.

Renaming database objects
Rename user objects (including user-defined datatypes) with sp_rename.

 Warning! After you rename a table or column, you must redefine all
procedures, triggers, and views that depend on the renamed object.

Using multibyte character sets
In multibyte character sets, a wider range of characters is available for use in
identifiers. For example, on a server with the Japanese language installed, the
following types of characters may be used as the first character of an identifier:
Zenkaku or Hankaku Katakana, Hiragana, Kanji, Romaji, Greek, Cyrillic, or
ASCII.

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

Reference Manual: Building Blocks 293

Although Hankaku Katakana characters are legal in identifiers on Japanese
systems, they are not recommended for use in heterogeneous systems. These
characters cannot be converted between the EUC-JIS and Shift-JIS character
sets.

The same is true for some 8-bit European characters. For example, the OE
ligature, is part of the Macintosh character set (codepoint 0xCE). This
character does not exist in the ISO 8859-1 (iso_1) character set. If the OE
ligature exists in data being converted from the Macintosh to the ISO 8859-1
character set, it causes a conversion error.

If an object identifier contains a character that cannot be converted, the client
loses direct access to that object.

Pattern matching with wildcard characters
Wildcard characters represent one or more characters, or a range of characters,
in a match_string. A match_stringis a character string containing the pattern to
find in the expression. It can be any combination of constants, variables, and
column names or a concatenated expression, such as:

like @variable + "%".

If the match string is a constant, it must always be enclosed in single or double
quotes.

Use wildcard characters with the keyword like to find character and date strings
that match a particular pattern. You cannot use like to search for seconds or
milliseconds. For more information, see “Using wildcard characters with
datetime data” on page 299.

Use wildcard characters in where and having clauses to find character or
date/time information that is like—or not like—the match string:

{where | having} [not]
expression [not] like match_string

[escape "escape_character "]

expression can be any combination of column names, constants, or functions
with a character value.

Wildcard characters used without like have no special meaning. For example,
this query finds any phone numbers that start with the four characters “415%”:

select phone

Pattern matching with wildcard characters

294 Adaptive Server Enterprise

from authors
where phone = "415%"

Using not like
Use not like to find strings that do not match a particular pattern. These two
queries are equivalent: they find all the phone numbers in the authors table that
do not begin with the 415 area code.

select phone
from authors
where phone not like "415%"

select phone
from authors
where not phone like "415%"

For example, this query finds the system tables in a database whose names
begin with “sys”:

select name
from sysobjects
where name like "sys%"

To see all the objects that are not system tables, use:

 not like "sys%"

If you have a total of 32 objects and like finds 13 names that match the pattern,
not like will find the 19 objects that do not match the pattern.

not like and the negative wildcard character [^] may give different results (see
“The caret (^) wildcard character” on page 297). You cannot always duplicate
not like patterns with like and ^. This is because not like finds the items that do
not match the entire like pattern, but like with negative wildcard characters is
evaluated one character at a time.

A pattern such as like “[^s][^y][^s]%" may not produce the same results. Instead
of 19, you might get only 14, with all the names that begin with “s”, or have
“y” as the second letter, or have “s” as the third letter eliminated from the
results, as well as the system table names. This is because match strings with
negative wildcard characters are evaluated in steps, one character at a time. If
the match fails at any point in the evaluation, it is eliminated.

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

Reference Manual: Building Blocks 295

Case and accent insensitivity
If your Adaptive Server uses a case-insensitive sort order, case is ignored when
comparing expression and match_string. For example, this clause would return
“Smith,” “smith,” and “SMITH” on a case-insensitive Adaptive Server:

where col_name like "Sm%"

If your Adaptive Server is also accent-insensitive, it treats all accented
characters as equal to each other and to their unaccented counterparts, both
uppercase and lowercase. The sp_helpsort system procedure displays the
characters that are treated as equivalent, displaying an “=” between them.

Using wildcard characters
You can use the match string with a number of wildcard characters, which are
discussed in detail in the following sections. Table 4-7 summarizes the
wildcard characters:

Table 4-7: Wildcard characters used with like

Enclose the wildcard character and the match string in single or double quotes
(like “[dD]eFr_nce”).

The percent sign (%) wildcard character

Use the % wildcard character to represent any string of zero or more characters.
For example, to find all the phone numbers in the authors table that begin with
the 415 area code:

select phone
from authors
where phone like "415%"

To find names that have the characters “en” in them (Bennet, Green,
McBadden):

select au_lname
from authors

Symbol Meaning

% Any string of 0 or more characters

_ Any single character

[] Any single character within the specified range ([a-f]) or set ([abcdef])

[^] Any single character not within the specified range ([^a-f]) or set ([^abcdef])

Pattern matching with wildcard characters

296 Adaptive Server Enterprise

where au_lname like "%en%"

Trailing blanks following “%” in a like clause are truncated to a single trailing
blank. For example, “%” followed by two spaces matches “X ”(one space);
“X ” (two spaces); “X ” (three spaces), or any number of trailing spaces.

The underscore (_) wildcard character

Use the underscore (_) wildcard character to represent any single character.
For example, to find all six-letter names that end with “heryl” (for example,
Cheryl):

select au_fname
from authors
where au_fname like "_heryl"

Bracketed ([]) characters

Use brackets to enclose a range of characters, such as [a-f], or a set of
characters such as [a2Br]. When ranges are used, all values in the sort order
between (and including) rangespec1 and rangespec2 are returned. For
example, “[0-z” matches 0-9, A-Z and a-z (and several punctuation characters)
in 7-bit ASCII.

To find names ending with “inger” and beginning with any single character
between M and Z:

select au_lname
from authors
where au_lname like "[M-Z]inger"

To find both “DeFrance” and “deFrance”:

select au_lname
from authors
where au_lname like "[dD]eFrance"

When using bracketed identifiers to create objects, such as with create table
[table_name] or create dstabase [dbname], you must include at least one valid
character.

All trailing spaces within bracketed identifiers are removed from the object
name. For example, you achieve the same results executing the following
create table commands:

• create table [tab1<space><space>]

• create table [tab1]

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

Reference Manual: Building Blocks 297

• create table [tab1<space><space><space>]

• create table tab1

This rule applies to all objects you can create using bracketed identifiers.

The caret (^) wildcard character

The caret is the negative wildcard character. Use it to find strings that do not
match a particular pattern. For example, “[^a-f]” finds strings that are not in the
range a-f and “[^a2bR]” finds strings that are not “a,” “2,” “b,” or “R.”

To find names beginning with “M” where the second letter is not “c”:

select au_lname
from authors
where au_lname like "M[^c]%"

When ranges are used, all values in the sort order between (and including)
rangespec1 and rangespec2 are returned. For example,
“[0-z]” matches 0-9, A-Z , a-z, and several punctuation characters in 7-bit
ASCII.

Using multibyte wildcard characters
If the multibyte character set configured on your Adaptive Server defines
equivalent double-byte characters for the wildcard characters _, %, - [,], and
^, you can substitute the equivalent character in the match string. The
underscore equivalent represents either a single- or double-byte character in
the match string.

Using wildcard characters as literal characters
To search for the occurrence of %, _, [,], or ^ within a string, you must use an
escape character. When a wildcard character is used in conjunction with an
escape character, Adaptive Server interprets the wildcard character literally,
rather than using it to represent other characters.

Adaptive Server provides two types of escape characters:

• Square brackets, a Transact-SQL extension

• Any single character that immediately follows an escape clause,
compliant with the SQL standards

Pattern matching with wildcard characters

298 Adaptive Server Enterprise

Using square brackets ([]) as escape characters

Use square brackets as escape characters for the percent sign, the underscore,
and the left bracket. The right bracket does not need an escape character; use it
by itself. If you use the hyphen as a literal character, it must be the first
character inside a set of square brackets.

Table 4-8 shows examples of square brackets used as escape characters with
like.

Table 4-8: Using square brackets to search for wildcard characters

Using the escape clause

Use the escape clause to specify an escape character. Any single character in
the server’s default character set can be used as an escape character. If you try
to use more than one character as an escape character, Adaptive Server
generates an exception.

Do not use existing wildcard characters as escape characters because:

• If you specify the underscore (_) or percent sign (%) as an escape
character, it loses its special meaning within that like predicate and acts
only as an escape character.

• If you specify the left or right bracket ([or]) as an escape character, the
Transact-SQL meaning of the bracket is disabled within that like predicate.

• If you specify the hyphen (-) or caret (^) as an escape character, it loses its
special meaning and acts only as an escape character.

An escape character retains its special meaning within square brackets, unlike
wildcard characters such as the underscore, the percent sign, and the open
bracket.

like predicate Meaning

like "5%" 5 followed by any string of 0 or more characters

like "5[%]" 5%

like "_n" an, in, on (and so on)

like "[_]n" _n

like "[a-cdf]" a, b, c, d, or f

like "[-acdf]" -, a, c, d, or f

like "[[]" [

like "]"]

like “[[]ab]” []ab

CHAPTER 4 Expressions, Identifiers, and Wildcard Characters

Reference Manual: Building Blocks 299

The escape character is valid only within its like predicate and has no effect on
other like predicates contained in the same statement. The only characters that
are valid following an escape character are the wildcard characters (_, %, [,],
or [^]), and the escape character itself. The escape character affects only the
character following it, and subsequent characters are not affected by it.

If the pattern contains two literal occurrences of the character that happens to
be the escape character, the string must contain four consecutive escape
characters. If the escape character does not divide the pattern into pieces of one
or two characters, Adaptive Server returns an error message. Table 4-9 shows
examples of escape clauses used with like.

Table 4-9: Using the escape clause

Using wildcard characters with datetime data
When you use like with datetime values, Adaptive Server converts the dates to
the standard datetime format, then to varchar. Since the standard storage format
does not include seconds or milliseconds, you cannot search for seconds or
milliseconds with like and a pattern.

It is a good idea to use like when you search for datetime values, since datetime
entries may contain a variety of date parts. For example, if you insert the value
“9:20” and the current date into a column named arrival_time, the clause:

where arrival_time = '9:20'

would not find the value, because Adaptive Server converts the entry into “Jan
1 1900 9:20AM.” However, the following clause would find this value:

where arrival_time like '%9:20%'

like predicate Meaning

like "5@%" escape "@" 5%

like "*_n" escape "*" _n

like "%80@%%" escape "@" String containing 80%

like "*_sql**%" escape "*" String containing _sql*

like "%#####_#%%" escape "#" String containing ##_%

Pattern matching with wildcard characters

300 Adaptive Server Enterprise

Reference Manual: Building Blocks 301

C H A P T E R 5 Reserved Words

Keywords, also known as reserved words, are words that have special
meanings. This chapter lists Transact-SQL and ANSI SQL keywords.

Topics covered are:

Transact-SQL reserved words
The words in Table 5-1 are reserved by Adaptive Server as keywords (part
of SQL command syntax). They cannot be used as names of database
objects such as databases, tables, rules, or defaults. They can be used as
names of local variables and as stored procedure parameter names.

To find the names of existing objects that are reserved words, use
sp_checkreswords in Reference Manual: Procedures.

Table 5-1: List of Transact-SQL reserved words

Topics Page
Transact-SQL reserved words 301

ANSI SQL reserved words 302

Potential ANSI SQL reserved words 303

Words

A add, all, alter, and, any, arith_overflow, as, asc, at, authorization, avg

B begin, between, break, browse, bulk, by

C cascade, case, char_convert, check, checkpoint, close, clustered, coalesce, commit, compute, confirm,
connect, constraint, continue, controlrow, convert, count, count_big, create, current, cursor

D database, dbcc, deallocate, declare, decrypt, default, delete, desc, deterministic, disk, distinct, drop,
dummy, dump

E else, encrypt, end, endtran, errlvl, errordata, errorexit, escape, except, exclusive, exec, execute, exists,
exit, exp_row_size, external

F fetch, fillfactor, for, foreign, from

G goto, grant, group

H having, holdlock

ANSI SQL reserved words

302 Adaptive Server Enterprise

ANSI SQL reserved words
Adaptive Server includes entry-level ANSI SQL features. Full ANSI SQL
implementation includes the words listed in the following tables as command
syntax. Upgrading identifiers can be a complex process; therefore, we are
providing this list for your convenience. The publication of this information
does not commit Sybase to providing all of these ANSI SQL features in
subsequent releases. In addition, subsequent releases may include keywords
not included in this list.

I identity, identity_gap, identity_start, if, in, index, inout, insensitive, insert, install, intersect, into, is,
isolation

J jar, join

K key, kill

L level, like, lineno, load, lock

M materialized, max, max_rows_per_page, min, mirror, mirrorexit, modify

N national, new, noholdlock, nonclustered, nonscrollable, non_sensitive, not, null, nullif,
numeric_truncation

Note Although “new” is not a Transact-SQL reserved word, since it may become a reserved word in the
future, Sybase recommends that you avoid using it (for example, to name a database object). “New” is a
special case (see “Potential ANSI SQL reserved words” on page 303 for information on other reserved
words) because it appears in the spt_values table, and because sp_checkreswords displays “New” as a
reserved word.

O of, off, offsets, on, once, online, only, open, option, or, order, out, output, over

P partition, perm, permanent, plan, prepare, primary, print, privileges, proc, procedure, processexit,
proxy_table, public

Q quiesce

R raiserror, read, readpast, readtext, reconfigure, references, remove, reorg, replace, replication,
reservepagegap, return, returns, revoke, role, rollback, rowcount, rows, rule

S save, schema, scroll, scrollable, select, semi_sensitive, set, setuser, shared, shutdown, some, statistics,
stringsize, stripe, sum, syb_identity, syb_restree, syb_terminate

T table, temp, temporary, textsize, to, tracefile, tran, transaction, trigger, truncate, tsequal

U union, unique, unpartition, update, use, user, user_option, using

V values, varying, view

W waitfor, when, where, while, with, work, writetext

X xmlextract, xmlparse, xmltest, xmlvalidate

Words

CHAPTER 5 Reserved Words

Reference Manual: Building Blocks 303

The words in Table 5-2 are ANSI SQL keywords that are not reserved words
in Transact-SQL.

Table 5-2: List of ANSI SQL reserved words

Potential ANSI SQL reserved words
If you are using the ISO/IEC 9075:1989 standard, also avoid using the words
shown in the following list because these words may become ANSI SQL
reserved words in the future.

Words

A absolute, action, allocate, are, assertion

B bit, bit_length, both

C cascaded, case, cast, catalog, char, char_length, character, character_length, coalesce, collate, collation,
column, connection, constraints, corresponding, cross, current_date, current_time, current_timestamp,
current_user

D date, day, dec, decimal, deferrable, deferred, describe, descriptor, diagnostics, disconnect, domain

E end-exec, exception, extract

F false, first, float, found, full

G get, global, go

H hour

I immediate, indicator, initially, inner, input, insensitive, int, integer, interval

J join

L language, last, leading, left, local, lower

M match, minute, module, month

N names, natural, nchar, next, no, nullif, numeric

O octet_length, outer, output, overlaps

P pad, partial, position, preserve, prior

R real, relative, restrict, right

S scroll, second, section, semi_sensitive, session_user , size , smallint, space, sql, sqlcode, sqlerror, sqlstate,
substring, system_user

T then, time, timestamp, timezone_hour, timezone_minute, trailing, translate, translation, trim, true

U unknown, upper, usage

V value, varchar

W when, whenever, write, year

Z zone

Potential ANSI SQL reserved words

304 Adaptive Server Enterprise

Table 5-3: List of potential ANSI SQL reserved words

Words

A after, alias, async

B before, boolean, breadth

C call, completion, cycle

D data, depth, dictionary

E each, elseif, equals

G general

I ignore

L leave, less, limit, loop

M modify

N new, none

O object, oid, old, operation, operators, others

P parameters, pendant, preorder, private, protected

R recursive, ref, referencing, resignal, return, returns, routine, row

S savepoint, search, sensitive, sequence, signal, similar, sqlexception, structure

T test, there, type

U under

V variable, virtual, visible

W wait, without

Reference Manual: Building Blocks 305

C H A P T E R 6 SQLSTATE Codes and Messages

This chapter describes Adaptive Server’s SQLSTATE status codes and
their associated messages.

Topics covered are:

SQLSTATE codes are required for entry level ANSI SQL compliance.
They provide diagnostic information about two types of conditions:

• Warnings – conditions that require user notification but are not
serious enough to prevent a SQL statement from executing
successfully

• Exceptions – conditions that prevent a SQL statement from having
any effect on the database

Each SQLSTATE code consists of a 2-character class followed by a
3-character subclass. The class specifies general information about error
type. The subclass specifies more specific information.

SQLSTATE codes are stored in the sysmessages system table, along with
the messages that display when these conditions are detected. Not all
Adaptive Server error conditions are associated with a SQLSTATE
code—only those mandated by ANSI SQL. In some cases, multiple
Adaptive Server error conditions are associated with a single SQLSTATE
value.

Warnings
Adaptive Server currently detects the following SQLSTATE warning
conditions, described in Table 6-1:

Topics Page
Warnings 305

Exceptions 306

Exceptions

306 Adaptive Server Enterprise

Table 6-1: SQLSTATE warnings

Exceptions
Adaptive Server detects the following types of exceptions:

• Cardinality violations

• Data exceptions

• Integrity constraint violations

• Invalid cursor states

• Syntax errors and access rule violations

• Transaction rollbacks

• with check option violations

Exception conditions are described in Table 6-2 through Table 6-8. Each class
of exceptions appears in its own table. Within each table, conditions are sorted
alphabetically by message text.

Cardinality violations
Cardinality violations occur when a query that should return only a single row
returns more than one row to an Embedded SQL™ application.

Message Value Description

Warning – null value
eliminated in set function.

01003 Occurs when you use an aggregate function (avg, max, min, sum, or
count) on an expression with a null value.

Warning–string data, right
truncation

01004 Occurs when character, unichar, or binary data is truncated to 255 bytes.
The data may be:

• The result of a select statement in which the client does not support the
WIDE TABLES property.

• Parameters to an RPC on remote Adaptive Servers or Open Servers that
do not support the WIDE TABLES property.

CHAPTER 6 SQLSTATE Codes and Messages

Reference Manual: Building Blocks 307

Table 6-2: Cardinality violations

Data exceptions
Data exceptions occur when an entry:

• Is too long for its datatype,

• Contains an illegal escape sequence, or

• Contains other format errors.

Table 6-3: Data exceptions

Message Value Description

Subquery returned more than 1 value. This
is illegal when the subquery follows =, !=,
<, <=, >, >=. or when the subquery is used
as an expression.

21000 Occurs when:

• A scalar subquery or a row subquery returns more than
one row.

• A select into parameter_list query in Embedded SQL
returns more than one row.

Message Value Description

Arithmetic overflow occurred. 22003 Occurs when:

• An exact numeric type would lose precision or scale as a result
of an arithmetic operation or sum function.

• An approximate numeric type would lose precision or scale as
a result of truncation, rounding, or a sum function.

Data exception - string data right
truncated.

22001 Occurs when a char, unichar, univarchar, or varchar column is too
short for the data being inserted or updated and non-blank
characters must be truncated.

Divide by zero occurred. 22012 Occurs when a numeric expression is being evaluated and the
value of the divisor is zero.

Illegal escape character found.
There are fewer bytes than
necessary to form a valid character.

22019 Occurs when you are searching for strings that match a given
pattern if the escape sequence does not consist of a single
character.

Invalid pattern string. The character
following the escape character must
be percent sign, underscore, left
square bracket, right square bracket,
or the escape character.

22025 Occurs when you are searching for strings that match a particular
pattern when:

• The escape character is not immediately followed by a percent
sign, an underscore, or the escape character itself, or

• The escape character partitions the pattern into substrings
whose lengths are other than 1 or 2 characters.

Exceptions

308 Adaptive Server Enterprise

Integrity constraint violations
Integrity constraint violations occur when an insert, update, or delete statement
violates a primary key, foreign key, check, or unique constraint or a unique index.

Table 6-4: Integrity constraint violations

Invalid cursor states
Invalid cursor states occur when:

• A fetch uses a cursor that is not currently open, or

• An update where current of or delete where current of affects a cursor row
that has been modified or deleted, or

• An update where current of or delete where current of affects a cursor row
that not been fetched.

Table 6-5: Invalid cursor states

Message Value Description

Attempt to insert duplicate key row in
object object_name with unique index
index_name.

23000 Occurs when a duplicate row is inserted
into a table that has a unique constraint
or index.

Check constraint violation occurred, dbname
= database_name, table name = table_name,
constraint name = constraint_name.

23000 Occurs when an update or delete
would violate a check constraint on a
column.

Dependent foreign key constraint violation
in a referential integrity constraint.
dbname = database_name,
table name = table_name, constraint name =
constraint_name.

23000 Occurs when an update or delete on a
primary key table would violate a
foreign key constraint.

Foreign key constraint violation occurred,
dbname = database_name, table name =
table_name, constraint name =
constraint_name.

23000 Occurs when an insert or update on a
foreign key table is performed without a
matching value in the primary key table.

Message Value Description

Attempt to use cursor cursor_name which is
not open. Use the system stored procedure
sp_cursorinfo for more information.

24000 Occurs when an attempt is made to fetch
from a cursor that has never been opened or
that was closed by a commit statement or an
implicit or explicit rollback. Reopen the
cursor and repeat the fetch.

CHAPTER 6 SQLSTATE Codes and Messages

Reference Manual: Building Blocks 309

Syntax errors and access rule violations
Syntax errors are generated by SQL statements that contain unterminated
comments, implicit datatype conversions not supported by Adaptive Server or
other incorrect syntax.

Access rule violations are generated when a user tries to access an object that
does not exist or one for which he or she does not have the correct permissions.

Table 6-6: Syntax errors and access rule violations

Cursor cursor_name was closed implicitly
because the current cursor position was
deleted due to an update or a delete. The
cursor scan position could not be
recovered. This happens for cursors which
reference more than one table.

24000 Occurs when the join column of a multitable
cursor has been deleted or changed. Issue
another fetch to reposition the cursor.

The cursor cursor_name had its current
scan position deleted because of a
DELETE/UPDATE WHERE CURRENT OF or a
regular searched DELETE/UPDATE. You must
do a new FETCH before doing an UPDATE or
DELETE WHERE CURRENT OF.

24000 Occurs when a user issues an update/delete
where current of whose current cursor
position has been deleted or changed. Issue
another fetch before retrying the
update/delete where current of.

The UPDATE/DELETE WHERE CURRENT OF failed
for the cursor cursor_name because it is
not positioned on a row.

24000 Occurs when a user issues an update/delete
where current of on a cursor that:

• Has not yet fetched a row

• Has fetched one or more rows after
reaching the end of the result set

Message Value Description

Message Value Description

command permission denied on
object object_name, database
database_name, owner owner_name.

42000 Occurs when a user tries to access an object for which he
or she does not have the proper permissions.

Implicit conversion from
datatype ‘datatype’ to
‘datatype’ is not allowed. Use
the CONVERT function to run
this query.

42000 Occurs when the user attempts to convert one datatype to
another but Adaptive Server cannot do the conversion
implicitly.

Incorrect syntax near
object_name.

42000 Occurs when incorrect SQL syntax is found near the
object specified.

Exceptions

310 Adaptive Server Enterprise

Transaction rollbacks
Transaction rollbacks occur when the transaction isolation level is set to 3, but
Adaptive Server cannot guarantee that concurrent transactions can be
serialized. This type of exception generally results from system problems such
as disk crashes and offline disks.

Table 6-7: Transaction rollbacks

with check option violation
This class of exception occurs when data being inserted or updated through a
view would not be visible through the view.

Insert error: column name or
number of supplied values does
not match table definition.

42000 Occurs during inserts when an invalid column name is
used or when an incorrect number of values is inserted.

Missing end comment mark ‘*/’. 42000 Occurs when a comment that begins with the /* opening
delimiter does not also have the */ closing delimiter.

object_name not found. Specify
owner.objectname or use sp_help
to check whether the object
exists (sp_help may produce
lots of output).

42000 Occurs when a user tries to reference an object that he or
she does not own. When referencing an object owned by
another user, be sure to qualify the object name with the
name of its owner.

The size (size) given to the
object_name exceeds the maximum.
The largest size allowed is
size.

42000 Occurs when:

• The total size of all the columns in a table definition
exceeds the maximum allowed row size.

• The size of a single column or parameter exceeds the
maximum allowed for its datatype.

Message Value Description

Message Value Description

Your server command (process id
#process_id) was deadlocked with
another process and has been chosen as
deadlock victim. Re-run your command.

40001 Occurs when Adaptive Server detects that it
cannot guarantee that two or more concurrent
transactions can be serialized.

CHAPTER 6 SQLSTATE Codes and Messages

Reference Manual: Building Blocks 311

Table 6-8: with check option violation

Message Value Description

The attempted insert or update failed because the
target view was either created WITH CHECK OPTION
or spans another view created WITH CHECK OPTION.
At least one resultant row from the command would
not qualify under the CHECK OPTION constraint.

44000 Occurs when a view, or any view
on which it depends, was created
with a with check option clause.

Exceptions

312 Adaptive Server Enterprise

Reference Manual: Building Blocks 313

Symbols
& (ampersand) “and” bitwise operator 278
* (asterisk)

for overlength numbers 232
multiplication operator 277

\ (backslash) character string continuation with 285
::= (BNF notation)

in SQL statements xvii
^ (caret)

“exclusive or” bitwise operator 278
wildcard character 295, 297

: (colon) preceding milliseconds 65, 133
, (comma)

in default print format for money values 18
not allowed in money values 19
in SQL statements xvii

{} (curly braces)
in SQL statements xvii

$ (dollar sign)
in identifiers 287
in money datatypes 19

.. (dots) in database object names 291
|| (double pipe)

string concatenation operator 279
= (equals sign) comparison operator 280
> (greater than) comparison operator 280
>= (greater than or equal to) comparison operator

280
< (less than) comparison operator 280
<= (less than or equal to) comparison operator 280
- (minus sign)

arithmetic operator 277
for negative monetary values 19
in integer data 13

!= (not equal to) comparison operator 280
<> (not equal to) comparison operator 280
!> (not greater than) comparison operator 280
!< (not less than) comparison operator 280
() (parentheses)

in expressions 284
in SQL statements xvii

% (percent sign)
arithmetic operator (modulo) 277
wildcard character 295

. (period)
preceding milliseconds 65, 133
separator for qualifier names 290

| (pipe) “or” bitwise operator 278
+ (plus)

arithmetic operator 277
in integer data 13
null values and 280
string concatenation operator 279

£ (pound sterling sign)
in identifiers 287
in money datatypes 19

“ ” (quotation marks)
comparison operators and 280
enclosing constant values 67
enclosing datetime values 21
enclosing empty strings 283, 285
in expressions 285
literal specification of 285

/ (slash) arithmetic operator (division) 277
[] (square brackets)

character set wildcard 295, 296
in SQL statements xvii

[^] (square brackets and caret) character set wildcard
295

~ (tilde) “not” bitwise operator 278
_ (underscore)

object identifier prefix 263, 286
in temporary table names 288
character string wildcard 295, 296

¥ (yen sign)
in identifiers 287
in money datatypes 19

@@cursor_rows global variable 268

Index

Index

314 Adaptive Server Enterprise

Numerics
“0x” prefix 30, 32
21st century numbers 21

A
abbreviations

chars for characters, patindex 190, 194
date parts 64, 132

abort option, lct_admin function 165
abs mathematical function 70
accent sensitivity, wildcard characters and 295
ACF. See Application Context Facility
acos mathematical function 71
adding

interval to a date 125
timestamp column 253
user-defined datatypes 42

addition operator (+) 277
aggregate functions 49–55

See also row aggregates; individual function names
avg 76
count 111
count_big 113–114
difference from row aggregates 53
group by clause and 50, 51
having clause and 50
max 178
min 180
scalar aggregates 50
sum 240
vector aggregates 50

aggregate functions and cursors 53
all keyword including subqueries 281
alter table command, adding timestamp column 253
ampersand (&) “and” bitwise operator 278
and (&) bitwise operator 278
and keyword

in expressions 283
range-end 281

angles, mathematical functions for 71
ANSI SQL datatypes 11
any keyword in expressions 281
application attributes 217
Application Context Facility (ACF) 217

application contexts
getting 147
listing 172
removing 209
setting 217

approximate numeric datatypes 16
arithabort option, set

arith_overflow and 11, 61
mathematical functions and arith_overflow 66
mathematical functions and numeric_truncation

62, 66
arithignore option, set

arith_overflow and 61
mathematical functions and arith_overflow 66

arithmetic
errors 66
expressions 276
operations, approximate numeric datatypes and 16
operations, exact numeric datatypes and 13
operations, money datatypes and 18
operators, in expressions 277

ASCII characters 72
ascii string function 72
asin mathematical function 73
asterisk (*)

multiplication operator 277
overlength numbers 232

atan mathematical function 74
@@authmech global variable 267
@@bootcount global variable 267
@@boottime global variable 267
@@bulkarraysize global variable 267
@@bulkbatchsize global variable 267
@@char_convert global variable 268
@@cis_rpc_handling global variable 268
@@cis_version global variable 268
@@client_csexpansion global variable 268
@@client_csid global variable 268
@@client_csname global variable 268
@@cmpstate global variable 268
@@connections global variable 268
@@cpu_busy global variable 268
@@curloid global variable 268
@@datefirst global variable 268
@@dbts global variable 268
@@error global variable 268

Index

Reference Manual: Building Blocks 315

@@errorlog global variable 269
@@failedoverconn global variable 269
@@fetch_status global variable 269
@@guestuserid global variable 269
@@hacmpservername global variable 269
@@haconnection global variable 269
@@heapmemsize global variable 269
@@identity global variable 269
@@idle global variable 269
@@invaliduserid global variable 269
@@io_busy global variable 269
@@isolation global variable 269
@@kernel_addr global variable 269
@@kernel_size global variable 269
@@langid global variable 269
@@language global variable 269
@@lock_timeout global variable 269
@@max_connections global variable 269
@@max_precision global variable 269
@@maxcharlen global variable 269
@@maxgroupid global variable 269
@@maxpagesize global variable 269
@@maxspid global variable 269
@@maxsuid global variable 270
@@maxuserid global variable 270
@@mempool_addr global variable 270
@@min_poolsize global variable 270
@@mingroupid global variable 270
@@minspid global variable 270
@@minsuid global variable 270
@@minuserid global variable 270
@@monitors_active global variable 270
@@ncharsize global variable 270
@@nestlevel global variable 270
@@nodeid global variable 270
@@optgoal global variable 270
@@options global variable 270
@@opttimeout global variable 270
@@pack_received global variable 270
@@pack_sent global variable 270
@@packet_errors global variable 270
@@pagesize global variable 270
@@parallel_degree global variable 270
@@probesuid global variable 270
@@procid global variable 270
@@recovery_state global variable 271

@@repartition_degree global variable 271
@@resource_granularity global variable 271
@@rowcount global variable 271
@@scan_parallel_degree global variable 271
@@servername global variable 271
@@setrowcount global variable 271
@@shmem_flags global variable 271
@@spid global variable 271
@@sqlstatus global variable 271
@@ssl_ciphersuite global variable 272
@@stringsize global variable 272
@@tempdbid global variable 272
@@textcolid global variable 39, 272
@@textdataptnid global variable 272
@@textdbid global variable 39, 272
@@textobjid global variable 39, 272
@@textptnid global variable 272
@@textptr global variable 39, 272
@@textptr_parameters global variable 272
@@textsize global variable 39, 272
@@textts global variable 39, 272
@@thresh_hysteresis global variable 272
@@timeticks global variable 272
@@total_errors global variable 272
@@total_read global variable 272
@@total_write global variable 272
@@tranchained global variable 272
@@trancount global variable 272
@@transactional_rpc global variable 272
@@transtate global variable 273
@@unicharsize global variable 273
@@version global variable 273
@@version_as_integer global variable 273
@@version_number global variable 273
atn2 mathematical function 75
attributes, setting in an application 217
audit_event_name function 78
auditing

audit_event_name function 78
@@authmech global variable 267
automatic operations, updating columns with timestamp

19
avg aggregate function 76

Index

316 Adaptive Server Enterprise

B
backslash (\) for character string continuation 285
Backus Naur Form (BNF) notation xvii
base 10 logarithm function 175
between keyword 281
bigint datatype 13
biginttohex datatype conversion function 80
binary

datatypes 30–32
datatypes, “0x” prefix 30, 32
datatypes, trailing zeros in 31
expressions 275
expressions, concatenating 279
representation of data for bitwise operations 278
sort 101, 226

binary datatype 30–33
bit datatype 33
bitwise operators 278–279
blanks

See also spaces, character
character datatypes and 27–30
comparisons 280
empty string evaluated as 285
like and 296
removing leading, with ltrim function 177
removing trailing, with rtrim function 216

BNF notation in SQL statements xvii
boolean (logical) expressions 275
@@bootcount global variable 267
@@boottime global variable 267
brackets. See square brackets []
browse mode and timestamp datatype 19, 252
built-in function, ACF 217
built-in functions 43–264

See also individual function names
aggregate 49
conversion 55
date 64
image 69
mathematical 65
security 66
string 67
system 68
text 69
type conversion 103–108

@@bulkarraysize global variable 267

@@bulkbatchsize global variable 267
by row aggregate subgroup 53

C
calculating dates 128
caldayofweek date part 132
calweekofyear date part 132
calyearofweek date part 132
case expressions 81–83, 186–187

null values and 82, 94, 186
case sensitivity

comparison expressions and 280, 295
identifiers and 288
in SQL xviii

cast function 84–86
cdw. See caldayofweek date part
ceiling mathematical function 87
chains of pages, text or image data 35
char datatype 25–27

in expressions 284
char string function 89
@@char_convert global variable 268
char_length string function 91
character data, avoiding “NULL” in 283
character datatypes 25–30
character expressions

blanks or spaces in 27–30
defined 275
syntax 276

character sets
conversion errors 293
iso_1 293
multibyte 292
object identifiers and 292

character strings
continuation with backslash (\) 285
empty 285
specifying quotes within 285
wildcards in 293

characters
See also spaces, character
“0x” 30, 32
0x 62
deleting, using stuff function 237

Index

Reference Manual: Building Blocks 317

number of 91
wildcard 293–299

charindex string function 93
@@cis_rpc_handling global variable 268
@@cis_version global variable 268
client, host computer name and 156
@@client_csexpansion global variable 268
@@client_csid global variable 268
@@client_csname global variable 268
@@cmpstate global variable 268
coalesce function 94–95
coalesce keyword, case 94
codes, soundex 228
col_length system function 96
col_name system function 97
colon (:), preceding milliseconds 133
column identifiers. See identifiers.
column name

as qualifier 290
in parentheses 53
returning 97

columns
identifying 290
length definition 96
length of 96
numeric, and row aggregates 53
sizes of (list) 2

comma (,)
default print format for money values 18
not allowed in money values 19
in SQL statements xvii

compare system function 98
comparing values

difference string function 143
in expressions 280
timestamp 252

comparison operators
See also relational expressions
in expressions 280
symbols for 280

compute clause and row aggregates 52
computing dates 128
concatenation

null values 280
using + operator 279
using || operator 279

@@connections global variable 268
constants

and string functions 67
comparing in expressions 284
expression for 275
string functions and 67

continuation lines, character string 285
conventions

See also syntax
identifier name 290
Transact-SQL syntax xvii
used in the Reference Manual xvi

conversion
automatic values 9
between character sets 293
character value to ASCII code 72
dates used with like keyword 24
degrees to radians 201
implicit 9, 284
integer value to character value 89, 250
lower to higher datatypes 284
lowercase to uppercase 254, 255, 256, 257
null values and automatic 10
radians to degrees 139
string concatenation 279
styles for dates 104
uppercase to lowercase 176

convert datatype conversion function 103
concatenation and 279
date styles 104

converting hexadecimal numbers 62
cos mathematical function 109
cot mathematical function 110
count aggregate function 111
count_big aggregate function 113–114
CP 850 Alternative

lower case first 101, 226
no accent 101, 226
no case preference 101, 226

CP 850 Scandinavian
dictionary 101, 226

@@cpu_busy global variable 268
create table command and null values 283
@@curloid global variable 268
curly braces ({}) in SQL statements xvii
currency symbols 19, 287

Index

318 Adaptive Server Enterprise

current user
roles of 219
suser_id system function 242
suser_name system function 243
user_id system function 261
user_name system function 262

current_date date function 115
current_time date function 116
cursors and aggregate functions 53
curunreservedpgs system function 117
cwk. See calweekofyear date part
cyr. See calyearofweek date part
cyrillic characters 292

D
data_pages system function 119–120
database object owners and identifiers 291
database objects

See also individual object names
ID number 188
identifier names 285
user-defined datatypes as 42

database owners
name as qualifier 290, 291
objects and identifiers 291

databases
See also database objects
getting name of 138
ID number, db_id function 137

datachange system function 121–122
datalength system function 123

compared to col_length 96
datatype conversions

biginttohex 80
binary and numeric data 63
bit information 63
character information 58
convert function 103, 106
date and time information 60
domain errors 62, 85, 106
functions for 55–63
hexadecimal-like information 62
hextobigint 153
hextoint 154

hextoint function 153, 154
image 63, 85, 107
implicit 56
inttohex 160
money information 59
numeric information 59, 60
overflow errors 61
rounding during 59
scale errors 61

datatype precedence. See precedence
datatypes 1–42

See also user-defined datatypes; individual datatype
names

ANSI SQL 11
approximate numeric 16
binary 30–32
bit 33
date and time 20–24
datetime values comparison 280
decimal 14–15
dropping user-defined 42
exact numeric 12–15
hierarchy 7
integer 13–14
mixed, arithmetic operations on 277
summary of 2–4
synonyms for 2
trailing zeros in binary 31
Transact-SQL extensions 11
user-defined 11
varbinary 224

date and time datatype 21–25
date datatype 20
date functions 64–65

See also individual function names
current_date 115
current_time 116
dateadd 124
datediff 127
datename 130
datepart 132
day 136
getdate 149
month 181
year 265

date parts

Index

Reference Manual: Building Blocks 319

abbreviation names and values 64, 132
caldayofweek 132
calweekofyear 132
calyearofweek 132
entering 21
order of 22

dateadd date function 124
datediff date function 127
datediff function 128
datefirst option, set 130, 135
dateformat option, set 22
datename date function 130
datepart date function 132
dates

comparing 280
datatypes 20–24
default display settings 23
display formats 20
earliest allowed 21, 64, 125
entry formats 22
pre-1753 datatypes for 64, 125

datetime datatype 21–25
comparison of 280
conversion 24
date functions and 133
values and comparisons 24

day date function 136
day date part 64, 132
dayofyear date part abbreviation and values 64, 132
db_id system function 137, 138
db_name system function 138
DB-Library programs, overflow errors in 77, 241
@@dbts global variable 268
dd. See day date part.
decimal datatype 14–15
decimal numbers

round function and 213
str function, representation of 232

decimal points
datatypes, allowing in 14
in integer data 13

default settings
date display format 20, 23
weekday order 135

default values
datatype length 103

datatype precision 103
datatype scale 103

degrees mathematical function 139
degrees, conversion to radians 201
delete command and text row 38
derived_stat system function 140
devices. See sysdevices table.
difference string function 143
division operator (/) 277
dollar sign ($)

in identifiers 287
in money datatypes 19

domain rules, mathematical functions errors in 66
dots (..) for omitted name elements 291
double pipe (||)

string concatenation operator 279
double precision datatype 17
double-byte characters. See Multibyte character sets.
double-precision floating-point values 17
doubling quotes

in expressions 285
in character strings 28

dropping
character with stuff function 237
leading or trailing blanks 177

duplicate rows, text or image 41
duplication of text. See replicate string function
dw. See weekday date part.
dy. See dayofyear date part.

E
e or E exponent notation

approximate numeric datatypes 17
float datatype 6
money datatypes 18

embedded spaces. See spaces, character.
empty string (“ ”) or (’ ’)

not evaluated as null 283
as a single space 30, 285

enclosing quotes in expressions 285
equal to. See comparison operators
@@error global variable 268
error handling, domain or range 66
@@errorlog global variable 269

Index

320 Adaptive Server Enterprise

errors
arithmetic overflow 61
cast function 85
convert function 58–62, 106
divide-by-zero 61
domain 62, 85, 106
scale 61
trapping mathematical 66

escape characters 298
escape keyword 298–299
european characters in object identifiers 293
exact numeric datatypes 12–15

arithmetic operations and 13
exists keyword in expressions 281
exp mathematical function 144
explicit null value 283
exponent, datatype (e or E)

approximate numeric types 17
float datatype 6
money types 18

exponential value 144
expressions

defined 275
enclosing quotes in 285
including null values 281
name and table name qualifying 291
types of 275

F
@@failedoverconn global variable 269
@@fetch_status global variable 269
finding

database ID 137
database name 138
server user ID 242
server user name 243, 244, 252, 258
starting position of an expression 93
user aliases 264
user IDs 261
user names 260, 262
valid identifiers 263

first-of-the-months, number of 128
fixed-length columns

binary datatypes for 30

character datatypes for 26
null values in 10

float datatype 17
floating-point data 275

str character representation of 232
floor mathematical function 145, 146
formats, date. See dates.
free pages, curunreservedpgs system function 118
front-end applications, browse mode and 252
functions 43

abs mathematical function 70
acos mathematical function 71
aggregate 49
ascii string function 72
asin mathematical function 73
atan mathematical function 74
atn2 mathematical function 75
avg aggregate function 76
biginttohex datatype conversion function 80
cast function 84–86
ceiling mathematical function 87
char string function 89
char_length string function 91
charindex string function 93
coalesce function 94–95
col_length system function 96
col_name system function 97
compare system function 98
conversion 55
convert datatype conversion function 103
cos mathematical function 109
cot mathematical function 110
count aggregate function 111
count_big aggregate function 113–114
current_date date function 115
current_time date function 116
curunreservedpgs system function 117
data_pages system function 119–120
datachange system function 121–122
datalength system function 123
date 64
dateadd date function 124
datediff date function 127
datename date function 130
datepart date function 132
day date function 136

Index

Reference Manual: Building Blocks 321

db_id system function 137, 138
degrees mathematical function 139
derived_stat system function 140
difference string function 143
exp mathematical function 144
floor mathematical function 145
get_appcontext security function 147
getdate date function 149
has_role system function 151
hextobigint datatype conversion function 153
hextoint datatype conversion function 154
host_id system function 155
host_name system function 156
image 69
index_col system function 158
index_colorder system function 159
inttohex datatype conversion function 160
is_quiesced function 161–162
is_sec_service_on security function 163
isnull system function 164
lct_admin system function 165
left system function 168
len string function 170
license_enabled system function 171
list_appcontexsecurity function 172
lockscheme system function 173
log mathematical function 174
log10 mathematical function 175
lower string function 176
ltrim string function 177
mathematical 65
max aggregate function 178
min aggregate function 180
month date function 181
mut_excl_roles system function 182
newidsystem function 183
next_identity system function 185
object_id system function 188
object_name system function 189
pagesize system function 190
partition_id 192
partition_id system function 192
partition_name 193
partition_name system function 193
patindex string function 194
pi mathematical function 197

power mathematical function 198
proc_role system function 199
radians mathematical function 201
rand mathematical function 202
replicate string function 203
reserved_pages system function 204
reverse string function 206
right string function 207
rm_appcontext security function 209
role_contain system function 210
role_id system function 211
role_name system function 212
round mathematical function 213
row_count system function 215
rtrim string function 216
security 66
set_appcontexsecurity function 217
show_role system function 219
show_sec_services security function 220
sign mathematical function 221
sin mathematical function 222
sortkey 224
sortkey system function 223
soundex string function 228
space string function 229
sqrt mathematical function 231
square mathematical function 230
str string function 232
str_replace string function 234
string 67
stuff string function 236
substring string function 238
sum aggregate function 240
suser_id system function 242
suser_name system function 243
syb_quit system function 244
syb_sendmsg 245
system 68
tan mathematical function 246
tempdb_id system function 247
text 69
textptr text and image function 248
textvalid text and image function 249
to_unichar string function 250
tran_dumptable_status string function 251
tsequal system function 252

Index

322 Adaptive Server Enterprise

uhighsurr string function 254
ulowsurr string function 255
upper string function 256
uscalar string function 257
used_pages system function 258
user system function 260
user_id system function 261
user_name system function 262
valid_name system function 263
valid_user system function 264
year date function 265

functions, built-in, type conversion 103–108

G
GB Pinyin 101, 226
get_appcontext security function 147
getdate date function 149
getutcdate to obtain the GMT 150
global variables

@@authmech 267
@@bootcount 267
@@boottime 267
@@bulkarraysize 267
@@bulkbatchsize 267
@@char_convert 268
@@cis_rpc_handling 268
@@cis_version 268
@@client_csexpansion 268
@@client_csid 268
@@client_csname 268
@@cmpstate 268
@@connections 268
@@cpu_busy 268
@@curloid 268
@@cursor_rows 268
@@dbts 268
@@error 268
@@errorlog 269
@@failedoverconn 269
@@fetch_status 269
@@guestuserid 269
@@hacmpservername 269
@@haconnection 269
@@heapmemsize 269

@@identity 269
@@idle 269
@@invaliduserid 269
@@io_busy 269
@@isolation 269
@@kernel_addr 269
@@kernel_size 269
@@langid 269
@@language 269
@@lock_timeout 269
@@max_connections 269
@@max_precision 269
@@maxcharlen 269
@@maxgroupid 269
@@maxpagesize 269
@@maxspid 269
@@maxsuid 270
@@maxuserid 270
@@mempool_addr 270
@@min_poolsize 270
@@mingroupid 270
@@minspid 270
@@minsuid 270
@@minuserid 270
@@monitors_active 270
@@ncharsize 270
@@nestlevel 270
@@nodeid 270
@@optgoal 270
@@options 270
@@opttimeout 270
@@pack_received 270
@@pack_sent 270
@@packet_errors 270
@@pagesize 270
@@parallel_degree 270
@@probesuid 270
@@procid 270
@@recovery_state 271
@@repartition_degree 271
@@resource_granularity 271
@@rowcount 271
@@scan_parallel_degree 271
@@servername 271
@@setrowcount 271
@@shmem_flags 271

Index

Reference Manual: Building Blocks 323

@@spid 271
@@sqlstatus 271
@@ssl_ciphersuite 272
@@stringsize 272
@@tempdbid 272
@@textcolid 272
@@textdataptnid 272
@@textdbid 272
@@textobjid 272
@@textptnid 272
@@textptr 272
@@textptr_parameters 272
@@textsize 272
@@textts 272
@@thresh_hysteresis 272
@@timeticks 272
@@total_errors 272
@@total_read 272
@@total_write 272
@@tranchained 272
@@trancount 272
@@transactional_rpc 272
@@transtate 273
@@unicharsize 273
@@version 273
@@version_as_integer 273
@@version_number 273
@@datefirst 268

greater than. See comparison operators.
Greek characters 292
group by clause and aggregate functions 50, 51
guest users 261
@@guestuserid global variable 269

H
@@hacmpservername global variable 269
@@haconnection global variable 269
has_role system function 151
having clause and aggregate functions 50
@@heapmemsize global variable 269
hexadecimal numbers, converting 62
hextobigint datatype conversion function 153
hextoint datatype conversion function 154
hextoint function 153, 154

hh. See hour date part.
hierarchy

See also precedence
operators 277

historic dates, pre-1753 64, 125
host computer name 156
host process ID, client process 155
host_id system function 155
host_name system function 156
hour date part 64, 132

I
identifiers 285–293

case sensitivity and 288
long 285
renaming 292
short 287
system functions and 263

identities
sa_role and Database Owner 261
server user (suser_id) 243
user (user_id) 261

@@identity global variable 269
identity_burn_max function 157
@@idle global variable 269
IDs, server role and role_id 211
IDs, user

database (db_id) 137
server user 243
user_id function for 242

image datatype 34–41
initializing 36
null values in 37
prohibited actions on 39

image functions 69
implicit conversion of datatypes 9, 284
in keyword in expressions 281
index_col system function 158
index_colorder system function 159
indexes

See also clustered indexes; database objects;
nonclustered indexes

sysindexes table 37
initializing text or image columns 38

Index

324 Adaptive Server Enterprise

inserting
automatic leading zero 32
spaces in text strings 229

int datatype 13
aggregate functions and 77, 241

integer data in SQL 275
integer datatypes, converting to 62
integer remainder. See Modulo operator (%)
internal datatypes of null columns 10

See also datatypes
internal structures, pages used for 204
inttohex datatype conversion function 160
@@invaliduserid global variable 269
@@io_busy global variable 269
is not null keyword in expressions 281
is_quiesced function 161–162
is_sec_service_on security function 163
isnull system function 164
ISO 8859-5 Cyrillic dictionary 101, 227
ISO 8859-5 Russian dictionary 101, 227
ISO 8859-9 Turkish dictionary 101, 227
iso_1 character set 293
@@isolation global variable 269
isql utility command

See also Utility Guide manual
approximate numeric datatypes and 17

J
Japanese character sets and object identifiers 293
joins

count or count(*) with 112, 113
null values and 282

K
@@kernel_addr global variable 269
@@kernel_size global variable 269
keywords 301–304

Transact-SQL 287, 301–302

L
@@langid global variable 269
@@language global variable 269
languages, alternate

effect on date parts 135
weekday order and 135

last-chance threshold and lct_admin function 166
last-chance thresholds 167
latin-1 English, French, German

dictionary 101, 226
no accent 101, 227

latin-1 Spanish
no accent 101, 227
no case 101, 227

lct_admin system function 165, 167
leading blanks, removal with ltrim function 177
leading zeros, automatic insertion of 32
left system function 168
len string function 170
length

See also size
of expressions in bytes 123
identifiers 285
of columns 96

less than. See comparison operators
license_enabled system function 171
like keyword

searching for dates with 24
wildcard characters used with 295

linkage, page. See pages, data
list_appcontex security function 172
listing datatypes with types 7
lists

functions 44
literal character specification

like match string 297
quotes (“ ”) 285

literal values
datatypes of 6
null 283

@@lock_timeout global variable 269
lockscheme system function 173
log mathematical function 173, 174
log10 mathematical function 175
logarithm, base 10 175
logical expressions 275

Index

Reference Manual: Building Blocks 325

syntax 276
truth tables for 283
when...then 81, 94, 186

log10 mathematical function 175
longsysname datatype 33
lower and higher datatypes. See precedence.
lower string function 176
lowercase letters, sort order and 288

See also case sensitivity
ltrim string function 177

M
macintosh character set 293
matching

See also Pattern matching
name and table name 291

mathematical functions 65
abs 70
acos 71
asin 73
atan 74
atn2 75
ceiling 87
cos 109
cot 110
degrees 139
exp 144
floor 145
log 174
log10 175
pi 197
power 198
radians 201
rand 202
round 213
sign 221
sin 222
sqrt 231
square 230
tan 246

max aggregate function 178
@@max_connections global variable 269
@@max_precision global variable 269
@@maxcharlen global variable 269

@@maxgroupid global variable 269
@@maxpagesize global variable 269
@@maxspid global variable 269
@@maxsuid global variable 270
@@maxuserid global variable 270
@@mempool_addr global variable 270
messages and mathematical functions 66
mi. See minute date part
midnights, number of 128
millisecond date part 65, 132
millisecond values, datediff results in 128
min aggregate function 180
@@min_poolsize global variable 270
@@mingroupid global variable 270
@@minspid global variable 270
@@minsuid global variable 270
minus sign (-)

in integer data 13
subtraction operator 277

@@minuserid global variable 270
minute date part 65, 132
mixed datatypes, arithmetic operations on 277
mm. See month date part
mm. See month date part.
model database, user-defined datatypes in 42
modulo operator (%) 277
money

default comma placement 18
symbols 287

money datatype 18
arithmetic operations and 18

@@monitors_active global variable 270
month date function 181
month date part 64, 132
month values and date part abbreviation 64, 132
ms. See millisecond date part
multibyte character sets

converting 58
identifier names 292
nchar datatype for 25
wildcard characters and 297

multiplication operator (*) 277
mut_excl_roles system function 182
mutual exclusivity of roles and mut_excl_roles 182

Index

326 Adaptive Server Enterprise

N
“N/A”, using “NULL” or 283
names

See also identifiers
checking with valid_name 292
date parts 64, 132
db_name function 138
finding similar-sounding 228
host computer 156
index_col and index 158
object_name function 189
omitted elements of (..) 291
qualifying database objects 290, 292
suser_name function 243
user_name function 262
weekday numbers and 135

naming
conventions 285–293
database objects 285–293
identifiers 285–293
user-defined datatypes 42

national character. See nchar datatype
natural logarithm 173, 174
nchar datatype 26–27
@@ncharsize global variable 270
negative sign (-) in money values 19
nesting

aggregate functions 51
string functions 67

@@nestlevel global variable 270
newidsystem function 183
next_identity system function 185
@@nodeid global variable 270
“none”, using “NULL” or 283
not keyword in expressions 281
not like keyword 294
not null values

spaces in 29
not null values in spaces 29
null keyword in expressions 281
null string in character columns 237, 283
null values

column datatype conversion for 29
default parameters as 282
in expressions 282
text and image columns 37

null values in a where clause 282
nullif expressions 186–187
nullif keyword 186
number (quantity of)

first-of-the-months 128
midnights 128
rows in count(*) 111, 113
Sundays 128

number of charactersand date interpretation 24
numbers

asterisks (**) for overlength 232
converting strings of 30
database ID 137
object ID 188
odd or even binary 32
random float 202
weekday names and 135

numeric data and row aggregates 53
numeric datatype 14
numeric expressions 275

round function for 213
nvarchar datatype 27

spaces in 27

O
object names, database

See also identifiers
user-defined datatype names as 42

object_id system function 188
object_name system function 189
objects. See database objects; databases
operators

arithmetic 277
bitwise 278–279
comparison 280
precedence 277

@@optgoal global variable 270
@@options global variable 270
@@opttimeout global variable 270
or keyword in expressions 283
order

See also indexes; precedence; sort order
of execution of operators in expressions 277
of date parts 22

Index

Reference Manual: Building Blocks 327

reversing character expression 206
weekday numeric 135

order by clause 224
other users, qualifying objects owned by 292
overflow errors in DB-Library 77, 241
ownership of objects being referenced 292

P
@@pack_received global variable 270
@@pack_sent global variable 270
@@packet_errors global variable 270
padding, data

blanks and 26
underscores in temporary table names 288
with zeros 31

pages, data
chain of 35
used for internal structures 204

@@pagesize global variable 270
pagesize system function 190
@@parallel_degree global variable 270
parentheses ()

See also Symbols section of this index
in an expression 284
in SQL statements xvii

partition_id function 192
partition_name function 193
patindex string function 194

text/image function 41
pattern matching 293

See also String functions; wildcard characters
charindex string function 93
difference string function 143
patindex string function 195

percent sign (%)
modulo operator 277
wildcard character 295

period (.)
preceding milliseconds 133
separator for qualifier names 290

pi mathematical function 197
platform-independent conversion

hexadecimal strings to integer values 153, 154
integer values to hexadecimal strings 160

plus (+)
arithmetic operator 277
in integer data 13
null values and 280
string concatenation operator 279

pointers
null for uninitialized text or image column 248
text and image page 248
text or image column 36

pound sterling sign (£)
in identifiers 287
in money datatypes 19

power mathematical function 198
precedence

of lower and higher datatypes 284
of operators in expressions 277

preceding blanks. See blanks; spaces, character
precision, datatype

approximate numeric types 17
exact numeric types 14
money types 18

@@probesuid global variable 270
proc_role system function 199
@@procid global variable 270
punctuation, characters allowed in identifiers 287

Q
qq. See quarter date part
qualifier names 290, 292
quarter date part 64, 132
quotation marks (“ ”)

comparison operators and 280
for empty strings 283, 285
enclosing constant values 67
in expressions 285
literal specification of 285

R
radians mathematical function 201
radians, conversion to degrees 139
rand mathematical function 202
range

Index

328 Adaptive Server Enterprise

See also numbers; size
of date part values 64, 132
datediff results 128
errors in mathematical functions 66
money values allowed 18
of recognized dates 21
wildcard character specification of 296, 297

range queries
and end keyword 281
between start keyword 281

readtext command and text data initialization requirement
38

real datatype 17
@@recovery_state global variable 271
reference information

datatypes 1
reserved words 301
Transact-SQL functions 43

relational expressions 276
See also comparison operators

removing application contexts 209
@@repartition_degree global variable 271
replicate string function 203
reserve option, lct_admin function 165
reserved words 301–304

See also keywords
database object identifiers and 285, 287
SQL92 302
Transact-SQL 301–302

reserved_pages system function 204
@@resource_granularity global variable 271
results of row aggregate operations 53
retrieving similar-sounding words or names 228
reverse string function 206
right string function 207, 208
right-justification of str function 233
rm_appcontext security function 209
role hierarchies and role_contain 210
role_contain system function 210
role_id system function 211
role_name system function 212
roles

checking with has_role 151
checking with proc_role 199
showing system with show_role 219

roles, user-defined and mutual exclusivity 182

round mathematical function 213
rounding 213

approximate numeric datatypes 17
datetime values 20, 60
money values 18, 59
str string function and 232

row aggregates 53
compute and 52
difference from aggregate functions 53

row_count system function 215
@@rowcount global variable 271
rows, table

detail and summary results 53
row aggregates and 53

rtrim string function 216
rules. See database objects.

S
scalar aggregates and nesting vector aggregates within

51
scale, datatype 14

decimal 9
IDENTITY columns 14
loss during datatype conversion 11
numeric 9

@@scan_parallel_degree global variable 271
scrollable cursor

 @@rowcount 268
search conditions and datetime data 24
second date part 65, 132
seconds, datediff results in 128
security functions 66

get_appcontext 147
is_sec_service_on 163
list_appcontex 172
rm_appcontext 209
set_appcontex 217
show_sec_services 220

seed values and rand function 202
select command 224

aggregates and 50
for browse 252
restrictions in standard SQL 51
in Transact-SQL compared to standard SQL 51

Index

Reference Manual: Building Blocks 329

select into command not allowed with compute 55
server user name and ID

suser_id function 242
suser_name function for 243

@@servername global variable 271
set_appcontex security function 217
@@setrowcount global variable 271
setting application context 217
shift-JIS binary order 102, 227
@@shmem_flags global variable 271
short identifiers 287
show_role system function 219
show_sec_services security function 220
sign mathematical function 221
similar-sounding words. See soundex string function
sin mathematical function 222
single quotes. See quotation marks
single-byte character sets, char datatype for 25
size

See also length; number (quantity of); range; size
limit; space allocation

column 96
floor mathematical function 146
identifiers (length) 286
image datatype 34
of pi 197
text datatype 34

size limit
approximate numeric datatypes 17
binary datatype 31
char columns 26
datatypes 2
double precision datatype 17
exact numeric datatypes 13
fixed-length columns 26
float datatype 17
image datatype 31
integer value smallest or largest 146
money datatypes 18
nchar columns 27
nvarchar columns 27
real datatype 17
varbinary datatype 31
varchar columns 26

slash (/) division operator 277
smalldatetime datatype 21

date functions and 133
smallint datatype 13
smallmoney datatype 18
sort order

character collation behavior 223, 224
comparison operators and 280

sortkey function 224
sortkey system function 223
soundex string function 228
sp_bindefault system procedure and user-defined

datatypes 42
sp_bindrule system procedure and user-defined

datatypes 42
sp_help system procedure 42
space string function 229
spaces, character

See also blanks
in character datatypes 27–30
empty strings (“ ”) or (’ ’) as 283, 285
inserted in text strings 229
like datetime values and 24
not allowed in identifiers 287

speed (Server)
binary and varbinary datatype access 31

@@spid global variable 271
SQL (used with Sybase databases). See Transact-SQL
SQL standards

aggregate functions and 51
concatenation and 280

SQLSTATE codes 305–311
exceptions 306–311

@@sqlstatus global variable 271
sqrt mathematical function 231
square brackets []

caret wildcard character [^] and 295, 297
in SQL statements xvii
wildcard specifier 295

square mathematical function 230
square root mathematical function 231
ss. See second date part
@@ssl_ciphersuite global variable 272
storage management for text and image data 37
str string function 232
str_replace string function 234
string functions 67

See also text datatype

Index

330 Adaptive Server Enterprise

ascii 72
char 89
char_length 91
charindex 93
difference 143
len 170
lower 176
ltrim 177
patindex 194
replicate 203
reverse 206
right 207
rtrim 216
soundex 228
space 229
str 232
str_replace 234
stuff 236
substring 238
to_unichar 250
tran_dumptable_status 251
uhighsurr 254
ulowsurr 255
upper 256
uscalar 257

strings, concatenating 279
@@stringsize global variable 272
stuff string function 236, 237
style values, date representation 104
subqueries

any keyword and 281
in expressions 281

substring string function 238
subtraction operator (-) 277
sum aggregate function 240
sundays, number value 128
suser_id system function 242
suser_name system function 243
syb_quit system function 244
syb_sendmsg function 245
symbols

See also wildcard characters; Symbols section of this
index

arithmetic operator 277
comparison operator 280
in identifier names 287

matching character strings 295
money 287
in SQL statements xvii
wildcards 295

synonyms and chars and characters, patindex 194
synonyms for datatypes 2
synonyms, chars and characters, patindex 190
syntax conventions, Transact-SQL xvii
syscolumns table 33
sysindexes table and name column in 37
sysname datatype 33
syssrvroles table and role_id system function 211
system datatypes. See datatypes
system functions 68

col_length 96
col_name 97
compare 98
curunreservedpgs 117
data_pages 119–120
datachange 121–122
datalength 123
db_id 137, 138
derived_stat 140
has_role system function 151
host_id 155
host_name 156
index_col 158
index_colorder 159
isnull 164
lct_admin 165
left 168
license_enabled 171
lockscheme 173
mut_excl_roles 182
newidsystem function 183
next_identity 185
object_id 188
object_name 189
pagesize 190
proc_role system function 199
reserved_pages 204
role_contain 210
role_id 211
role_name 212
row_count 215
show_role 219

Index

Reference Manual: Building Blocks 331

sortkey 223
suser_id 242
suser_name 243
syb_quit 244
tempdb_id 247
tsequal 252
used_pages 258
user 260
user_id 261
user_name 262
valid_name 263
valid_user 264

system roles and show_role and 219
system tables and sysname datatype 33

T
table pages

See also pages, data
tables

identifying 290
names as qualifiers 290
worktables 50

tan mathematical function 246
tangents, mathematical functions for 246
tempdb database, user-defined datatypes in 42
@@tempdbid global variable 272
tempdb_id system function 247
tempdbs and tempdb_id system function 247
temporary tables, naming 288

number of bytes 288
padding 288
sysobjects 288

text and image functions
textptr 248
textvalid 249

text datatype 34–41
convert command 40
converting 59
initializing with null values 36
null values 37
prohibited actions on 39

text datatype and ascii string function 72
text functions 69
text page pointer 96

text pointer values 248
@@textcolid global variable 39, 272
@@textdataptnid global variable 272
@@textdbid global variable 39, 272
@@textobjid global variable 39, 272
@@textptnid global variable 272
textptr function 248
@@textptr global variable 39, 272
textptr text and image function 248
@@textptr_parameters global variable 272
@@textsize global variable 39, 272
@@textts global variable 39, 272
textvalid text and image function 249
Thai dictionary 101, 226
then keyword. See when...then conditions
@@thresh_hysteresis global variable 272
thresholds, last-chance 167
time values

datatypes 20–24
timestamp datatype 19

automatic update of 19
browse mode and 19, 252
comparison using tsequal function 252

@@timeticks global variable 272
tinyint datatype 13
to_unichar string function 250
@@total_errors global variable 272
@@total_read global variable 272
@@total_write global variable 272
trailing blanks. See blanks
tran_dumptable_status string function 251
@@tranchained global variable 272
@@trancount global variable 272
@@transactional_rpc global variable 272
Transact-SQL

aggregate functions in 51
reserved words 301–302

Transact-SQL extensions 11
translation of integer arguments into binary numbers

278
@@transtate global variable 273
triggers See database objects; stored procedures.
trigonometric functions 65, 65–246
true/false data, bit columns for 33
truncation

arithabort numeric_truncation 10

Index

332 Adaptive Server Enterprise

binary datatypes 30
character string 26
datediff results 128
str conversion and 233
temporary table names 288

truth tables for logical expressions 283
tsequal system function 252
twenty-first century numbers 21

U
UDP messaging 245
uhighsurr string function 254
ulowsurr string function 255
underscore (_)

character string wildcard 295, 296
object identifier prefix 263, 286
in temporary table names 288

@@unicharsize global variable 273
unique names as identifiers 289
unitext datatype 34–41
unsigned bigint datatype 13
unsigned int datatype 13
unsigned smallint datatype 13
updating

See also changing 19
in browse mode 252
prevention during browse mode 252

upper string function 256, 257
uppercase letter preference 288

See also case sensitivity; order by clause
us_english language, weekdays setting 135
uscalar string function 257
used_pages system function 258
User Datagram Protocol messaging 245
user IDs

user_id function for 261
valid_user function 264

user names 262
user names, finding 243, 262
user objects. See database objects
user system function 260
user_id system function 261
user_name system function 262
user-created objects. See database objects

user-defined datatypes 11
See also datatypes
creating 42
dropping 42
longsysname as 33
sysname as 33

user-defined roles and mutual exclusivity 182
using bytes option, patindex string function 190, 194,

195

V
valid_name system function 263

using after changing character sets 292
valid_user system function 264
varbinary datatype 30–32, 224
varchar datatype 27

datetime values conversion to 24
in expressions 284
spaces in 27

variable-length character. See varchar datatype
vector aggregates 50

nesting inside scalar aggregates 51
@@version global variable 273
@@version_number global variable 273
@@version_as_integer global variable 273
view name in qualified object name 290

W
week date part 64, 132
weekday date part 64, 132
weekday date value, names and numbers 135
when keyword. See when...then conditions
when...then conditions 81
where clause, null values in a 282
wildcard characters 293–299

See also patindex string function
in a like match string 295
literal characters and 297
used as literal characters 297

wk. See week date part
words, finding similar-sounding 228
worktables, number of 50

Index

Reference Manual: Building Blocks 333

writetext command and text data initialization
requirement 38

Y
year date function 265
year date part 64, 132
yen sign (¥)

in identifiers 287
in money datatypes 19

yes/no data, bit columns for 33
yy. See year date part

Z
zero x (0x) 30, 32, 62
zeros, trailing, in binary datatypes 31–32

Index

334 Adaptive Server Enterprise

	Reference Manual: Building Blocks
	About This Book
	CHAPTER 1 System and User-Defined Datatypes
	Datatype categories
	Range and storage size
	Datatypes of columns, variables, or parameters
	Declaring the datatype for a column in a table
	Declaring the datatype for a local variable in a batch or procedure
	Declaring the datatype for a parameter in a stored procedure
	Determining the datatype of a literal
	Numeric literals
	Character literals

	Datatypes of mixed-mode expressions
	Determining the datatype hierarchy
	Determining precision and scale

	Datatype conversions
	Automatic conversion of fixed-length NULL columns
	Handling overflow and truncation errors

	Standards and compliance
	Exact numeric datatypes
	Integer types
	Decimal datatypes
	Standards and compliance

	Approximate numeric datatypes
	Understanding approximate numeric datatypes
	Range, precision, and storage size
	Entering approximate numeric data
	Values that may be entered by Open Client clients
	Standards and compliance

	Money datatypes
	Accuracy
	Range and storage size
	Entering monetary values
	Standards and compliance

	Timestamp datatype
	Creating a timestamp column

	Date and time datatypes
	Range and storage requirements
	Entering date and time data
	Standards and compliance

	Character datatypes
	unichar, univarchar
	Length and storage size
	Entering character data
	Entering Unicode characters

	Treatment of blanks
	Manipulating character data
	Standards and compliance

	Binary datatypes
	Valid binary and varbinary entries
	Entries of more than the maximum column size
	Treatment of trailing zeros
	Platform dependence
	Standards and compliance

	bit datatype
	Standards and compliance

	sysname and longsysname datatypes
	Standards and compliance

	text, image, and unitext datatypes
	Data structures used for storing text, unitext, and image data
	Initializing text, unitext, and image columns
	Defining unitext columns

	Saving space by allowing NULL
	Getting information from sysindexes
	Using readtext and writetext
	Determining how much space a column uses
	Restrictions on text, image, and unitext columns
	Selecting text, unitext, and image data
	Converting text and image datatypes
	Converting to or from unitext
	Pattern matching in text data
	Duplicate rows
	Standards and compliance

	User-defined datatypes
	Standards and compliance

	CHAPTER 2 Transact-SQL Functions
	Types of functions
	Aggregate functions
	Aggregates used with group by
	Aggregate functions and NULL values
	Vector and scalar aggregates
	Aggregate functions as row aggregates

	Datatype conversion functions
	Converting character data to a noncharacter type
	Converting from one character type to another
	Converting numbers to a character type
	Rounding during conversion to and from money types
	Converting date and time information
	Converting between numeric types
	Arithmetic overflow and divide-by-zero errors
	Scale errors
	Domain errors

	Conversions between binary and integer types
	Converting between binary and numeric or decimal types
	Converting image columns to binary types
	Converting other types to bit
	Converting NULL value

	Date functions
	Date parts

	Mathematical functions
	Security functions
	String functions
	Limits on string functions

	System functions
	Text, unitext, and image columns
	Text and image functions
	abs
	acos
	ascii
	asin
	atan
	atn2
	avg
	audit_event_name
	biginttohex
	case
	cast
	ceiling
	char
	char_length
	charindex
	coalesce
	col_length
	col_name
	compare
	convert
	cos
	cot
	count
	count_big
	current_date
	current_time
	curunreservedpgs
	data_pages
	datachange
	datalength
	dateadd
	datediff
	datename
	datepart
	day
	db_id
	db_name
	degrees
	derived_stat
	difference
	exp
	floor
	get_appcontext
	getdate
	getutcdate
	has_role
	hextobigint
	hextoint
	host_id
	host_name
	identity_burn_max
	index_col
	index_colorder
	inttohex
	is_quiesced
	is_sec_service_on
	isnull
	lct_admin
	left
	len
	license_enabled
	list_appcontext
	lockscheme
	log
	log10
	lower
	ltrim
	max
	min
	month
	mut_excl_roles
	newid
	next_identity
	nullif
	object_id
	object_name
	pagesize
	partition_id
	partition_name
	patindex
	pi
	power
	proc_role
	radians
	rand
	replicate
	reserved_pages
	reverse
	right
	rm_appcontext
	role_contain
	role_id
	role_name
	round
	row_count
	rtrim
	set_appcontext
	show_role
	show_sec_services
	sign
	sin
	sortkey
	soundex
	space
	square
	sqrt
	str
	str_replace
	stuff
	substring
	sum
	suser_id
	suser_name
	syb_quit
	syb_sendmsg
	tan
	tempdb_id
	textptr
	textvalid
	to_unichar
	tran_dumptable_status
	tsequal
	uhighsurr
	ulowsurr
	upper
	uscalar
	used_pages
	user
	user_id
	user_name
	valid_name
	valid_user
	year

	CHAPTER 3 Global Variables
	Adaptive Server global variables

	CHAPTER 4 Expressions, Identifiers, and Wildcard Characters
	Expressions
	Size of expressions
	Arithmetic and character expressions
	Relational and logical expressions
	Operator precedence
	Arithmetic operators
	Bitwise operators
	String concatenation operator
	Comparison operators
	Nonstandard operators
	Using any, all and in
	Negating and testing
	Ranges
	Using nulls in expressions
	Comparisons that return TRUE
	Difference between FALSE and UNKNOWN
	Using “NULL” as a character string
	NULL compared to the empty string

	Connecting expressions
	Using parentheses in expressions
	Comparing character expressions
	Using the empty string
	Including quotation marks in character expressions
	Using the continuation character

	Identifiers
	Short identifiers
	Tables beginning with # (temporary tables)
	Case sensitivity and identifiers
	Uniqueness of object names
	Using delimited identifiers
	Identifying tables or columns by their qualified object name
	Using delimited identifiers within an object name
	Omitting the owner name
	Referencing your own objects in the current database
	Referencing objects owned by the database owner
	Using qualified identifiers consistently

	Determining whether an identifier is valid
	Renaming database objects
	Using multibyte character sets

	Pattern matching with wildcard characters
	Using not like
	Case and accent insensitivity
	Using wildcard characters
	The percent sign (%) wildcard character
	The underscore (_) wildcard character
	Bracketed ([]) characters
	The caret (^) wildcard character

	Using multibyte wildcard characters
	Using wildcard characters as literal characters
	Using square brackets ([]) as escape characters
	Using the escape clause

	Using wildcard characters with datetime data

	CHAPTER 5 Reserved Words
	Transact-SQL reserved words
	ANSI SQL reserved words
	Potential ANSI SQL reserved words

	CHAPTER 6 SQLSTATE Codes and Messages
	Warnings
	Exceptions
	Cardinality violations
	Data exceptions
	Integrity constraint violations
	Invalid cursor states
	Syntax errors and access rule violations
	Transaction rollbacks
	with check option violation

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

